mino-pypy / pypy / objspace / std / test / test_complexobject.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
import py
from pypy.objspace.std.complexobject import W_ComplexObject, \
    pow__Complex_Complex_ANY
from pypy.objspace.std import complextype as cobjtype
from pypy.objspace.std.multimethod import FailedToImplement
from pypy.objspace.std.stringobject import W_StringObject
from pypy.objspace.std import StdObjSpace

EPS = 1e-9

class TestW_ComplexObject:
    def test_instantiation(self):
        def _t_complex(r=0.0,i=0.0):
            c = W_ComplexObject(r, i)
            assert c.realval == float(r) and c.imagval == float(i)
        pairs = (
            (1, 1),
            (1.0, 2.0),
            (2L, 3L),
        )
        for r,i in pairs:
            _t_complex(r,i)

    def test_parse_complex(self):
        f = cobjtype._split_complex
        def test_cparse(cnum, realnum, imagnum):
            result = f(cnum)
            assert len(result) == 2
            r, i = result
            assert r == realnum
            assert i == imagnum

        test_cparse('3', '3', '0.0')
        test_cparse('3+3j', '3', '3')
        test_cparse('3.0+3j', '3.0', '3')
        test_cparse('3L+3j', '3L', '3')
        test_cparse('3j', '0.0', '3')
        test_cparse('.e+5', '.e+5', '0.0')
        test_cparse('(1+2j)', '1', '2')
        test_cparse('(1-6j)', '1', '-6')
        test_cparse(' ( +3.14-6J )', '+3.14', '-6')
        test_cparse(' +J', '0.0', '1.0')
        test_cparse(' -J', '0.0', '-1.0')

    def test_unpackcomplex(self):
        space = self.space
        w_z = W_ComplexObject(2.0, 3.5)
        assert space.unpackcomplex(w_z) == (2.0, 3.5)
        space.raises_w(space.w_TypeError, space.unpackcomplex, space.w_None)
        w_f = space.newfloat(42.5)
        assert space.unpackcomplex(w_f) == (42.5, 0.0)
        w_l = space.wrap(-42L)
        assert space.unpackcomplex(w_l) == (-42.0, 0.0)

    def test_pow(self):
        def _pow((r1, i1), (r2, i2)):
            w_res = W_ComplexObject(r1, i1).pow(W_ComplexObject(r2, i2))
            return w_res.realval, w_res.imagval
        assert _pow((0.0,2.0),(0.0,0.0)) == (1.0,0.0)
        assert _pow((0.0,0.0),(2.0,0.0)) == (0.0,0.0)
        rr, ir = _pow((0.0,1.0),(2.0,0.0))
        assert abs(-1.0 - rr) < EPS
        assert abs(0.0 - ir) < EPS

        def _powu((r1, i1), n):
            w_res = W_ComplexObject(r1, i1).pow_positive_int(n)
            return w_res.realval, w_res.imagval
        assert _powu((0.0,2.0),0) == (1.0,0.0)
        assert _powu((0.0,0.0),2) == (0.0,0.0)
        assert _powu((0.0,1.0),2) == (-1.0,0.0)

        def _powi((r1, i1), n):
            w_res = W_ComplexObject(r1, i1).pow_small_int(n)
            return w_res.realval, w_res.imagval
        assert _powi((0.0,2.0),0) == (1.0,0.0)
        assert _powi((0.0,0.0),2) == (0.0,0.0)
        assert _powi((0.0,1.0),2) == (-1.0,0.0)
        c = W_ComplexObject(0.0,1.0)
        p = W_ComplexObject(2.0,0.0)
        r = pow__Complex_Complex_ANY(self.space,c,p,self.space.wrap(None))
        assert r.realval == -1.0
        assert r.imagval == 0.0


class AppTestAppComplexTest:
    spaceconfig = {
        "usemodules": ["binascii", "rctime"]
    }

    def w_check_div(self, x, y):
        """Compute complex z=x*y, and check that z/x==y and z/y==x."""
        z = x * y
        if x != 0:
            q = z / x
            assert self.close(q, y)
            q = z.__div__(x)
            assert self.close(q, y)
            q = z.__truediv__(x)
            assert self.close(q, y)
        if y != 0:
            q = z / y
            assert self.close(q, x)
            q = z.__div__(y)
            assert self.close(q, x)
            q = z.__truediv__(y)
            assert self.close(q, x)

    def w_close(self, x, y):
        """Return true iff complexes x and y "are close\""""
        return self.close_abs(x.real, y.real) and self.close_abs(x.imag, y.imag)

    def w_close_abs(self, x, y, eps=1e-9):
        """Return true iff floats x and y "are close\""""
        # put the one with larger magnitude second
        if abs(x) > abs(y):
            x, y = y, x
        if y == 0:
            return abs(x) < eps
        if x == 0:
            return abs(y) < eps
        # check that relative difference < eps
        return abs((x - y) / y) < eps

    def w_almost_equal(self, a, b, eps=1e-9):
        if isinstance(a, complex):
            if isinstance(b, complex):
                return a.real - b.real < eps and a.imag - b.imag < eps
            else:
                return a.real - b < eps and a.imag < eps
        else:
            if isinstance(b, complex):
                return a - b.real < eps and b.imag < eps
            else:
                return a - b < eps

    def test_div(self):
        from random import random
        # XXX this test passed but took waaaaay to long
        # look at dist/lib-python/modified-2.5.2/test/test_complex.py
        #simple_real = [float(i) for i in xrange(-5, 6)]
        simple_real = [-2.0, 0.0, 1.0]
        simple_complex = [complex(x, y) for x in simple_real for y in simple_real]
        for x in simple_complex:
            for y in simple_complex:
                self.check_div(x, y)

        # A naive complex division algorithm (such as in 2.0) is very prone to
        # nonsense errors for these (overflows and underflows).
        self.check_div(complex(1e200, 1e200), 1+0j)
        self.check_div(complex(1e-200, 1e-200), 1+0j)

        # Just for fun.
        for i in xrange(100):
            self.check_div(complex(random(), random()),
                           complex(random(), random()))

        raises(ZeroDivisionError, complex.__div__, 1+1j, 0+0j)
        # FIXME: The following currently crashes on Alpha
        raises(OverflowError, pow, 1e200+1j, 1e200+1j)

    def test_truediv(self):
        assert self.almost_equal(complex.__truediv__(2+0j, 1+1j), 1-1j)
        raises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)

    def test_floordiv(self):
        assert self.almost_equal(complex.__floordiv__(3+0j, 1.5+0j), 2)
        raises(ZeroDivisionError, complex.__floordiv__, 3+0j, 0+0j)

    def test_coerce(self):
        raises(OverflowError, complex.__coerce__, 1+1j, 1L<<10000)

    def test_richcompare(self):
        assert complex.__lt__(1+1j, None) is NotImplemented
        assert complex.__eq__(1+1j, 2+2j) is False
        assert complex.__eq__(1+1j, 1+1j) is True
        assert complex.__ne__(1+1j, 1+1j) is False
        assert complex.__ne__(1+1j, 2+2j) is True
        raises(TypeError, complex.__lt__, 1+1j, 2+2j)
        raises(TypeError, complex.__le__, 1+1j, 2+2j)
        raises(TypeError, complex.__gt__, 1+1j, 2+2j)
        raises(TypeError, complex.__ge__, 1+1j, 2+2j)
        large = 1 << 10000
        assert not (5+0j) == large
        assert not large == (5+0j)
        assert (5+0j) != large
        assert large != (5+0j)

    def test_mod(self):
        raises(ZeroDivisionError, (1+1j).__mod__, 0+0j)

        a = 3.33+4.43j
        raises(ZeroDivisionError, "a % 0")

    def test_divmod(self):
        raises(ZeroDivisionError, divmod, 1+1j, 0+0j)

    def test_pow(self):
        assert self.almost_equal(pow(1+1j, 0+0j), 1.0)
        assert self.almost_equal(pow(0+0j, 2+0j), 0.0)
        raises(ZeroDivisionError, pow, 0+0j, 1j)
        assert self.almost_equal(pow(1j, -1), 1/1j)
        assert self.almost_equal(pow(1j, 200), 1)
        raises(ValueError, pow, 1+1j, 1+1j, 1+1j)

        a = 3.33+4.43j
        assert a ** 0j == 1
        assert a ** 0.+0.j == 1

        assert 3j ** 0j == 1
        assert 3j ** 0 == 1

        raises(ZeroDivisionError, "0j ** a")
        raises(ZeroDivisionError, "0j ** (3-2j)")

        # The following is used to exercise certain code paths
        assert a ** 105 == a ** 105
        assert a ** -105 == a ** -105
        assert a ** -30 == a ** -30
        assert a ** 2 == a * a

        assert 0.0j ** 0 == 1

        b = 5.1+2.3j
        raises(ValueError, pow, a, b, 0)

        b = complex(float('inf'), 0.0) ** complex(10., 3.)
        assert repr(b) == "(nan+nanj)"

    def test_boolcontext(self):
        from random import random
        for i in xrange(100):
            assert complex(random() + 1e-6, random() + 1e-6)
        assert not complex(0.0, 0.0)

    def test_conjugate(self):
        assert self.close(complex(5.3, 9.8).conjugate(), 5.3-9.8j)

    def test_constructor(self):
        class OS:
            def __init__(self, value):
                self.value = value
            def __complex__(self):
                return self.value
        class NS(object):
            def __init__(self, value):
                self.value = value
            def __complex__(self):
                return self.value
        assert complex(OS(1+10j)) == 1+10j
        assert complex(NS(1+10j)) == 1+10j
        assert complex(OS(1+10j), 5) == 1+15j
        assert complex(NS(1+10j), 5) == 1+15j
        assert complex(OS(1+10j), 5j) == -4+10j
        assert complex(NS(1+10j), 5j) == -4+10j

        raises(TypeError, complex, OS(None))
        raises(TypeError, complex, NS(None))

        # -- The following cases are not supported by CPython, but they
        # -- are supported by PyPy, which is most probably ok
        #raises((TypeError, AttributeError), complex, OS(1+10j), OS(1+10j))
        #raises((TypeError, AttributeError), complex, NS(1+10j), OS(1+10j))
        #raises((TypeError, AttributeError), complex, OS(1+10j), NS(1+10j))
        #raises((TypeError, AttributeError), complex, NS(1+10j), NS(1+10j))

        class F(object):
            def __float__(self):
                return 2.0
        assert complex(OS(1+10j), F()) == 1+12j
        assert complex(NS(1+10j), F()) == 1+12j

        assert self.almost_equal(complex("1+10j"), 1+10j)
        assert self.almost_equal(complex(10), 10+0j)
        assert self.almost_equal(complex(10.0), 10+0j)
        assert self.almost_equal(complex(10L), 10+0j)
        assert self.almost_equal(complex(10+0j), 10+0j)
        assert self.almost_equal(complex(1,10), 1+10j)
        assert self.almost_equal(complex(1,10L), 1+10j)
        assert self.almost_equal(complex(1,10.0), 1+10j)
        assert self.almost_equal(complex(1L,10), 1+10j)
        assert self.almost_equal(complex(1L,10L), 1+10j)
        assert self.almost_equal(complex(1L,10.0), 1+10j)
        assert self.almost_equal(complex(1.0,10), 1+10j)
        assert self.almost_equal(complex(1.0,10L), 1+10j)
        assert self.almost_equal(complex(1.0,10.0), 1+10j)
        assert self.almost_equal(complex(3.14+0j), 3.14+0j)
        assert self.almost_equal(complex(3.14), 3.14+0j)
        assert self.almost_equal(complex(314), 314.0+0j)
        assert self.almost_equal(complex(314L), 314.0+0j)
        assert self.almost_equal(complex(3.14+0j, 0j), 3.14+0j)
        assert self.almost_equal(complex(3.14, 0.0), 3.14+0j)
        assert self.almost_equal(complex(314, 0), 314.0+0j)
        assert self.almost_equal(complex(314L, 0L), 314.0+0j)
        assert self.almost_equal(complex(0j, 3.14j), -3.14+0j)
        assert self.almost_equal(complex(0.0, 3.14j), -3.14+0j)
        assert self.almost_equal(complex(0j, 3.14), 3.14j)
        assert self.almost_equal(complex(0.0, 3.14), 3.14j)
        assert self.almost_equal(complex("1"), 1+0j)
        assert self.almost_equal(complex("1j"), 1j)
        assert self.almost_equal(complex(),  0)
        assert self.almost_equal(complex("-1"), -1)
        assert self.almost_equal(complex("+1"), +1)
        assert self.almost_equal(complex(" ( +3.14-6J ) "), 3.14-6j)

        class complex2(complex):
            pass
        assert self.almost_equal(complex(complex2(1+1j)), 1+1j)
        assert self.almost_equal(complex(real=17, imag=23), 17+23j)
        assert self.almost_equal(complex(real=17+23j), 17+23j)
        assert self.almost_equal(complex(real=17+23j, imag=23), 17+46j)
        assert self.almost_equal(complex(real=1+2j, imag=3+4j), -3+5j)

        c = 3.14 + 1j
        assert complex(c) is c
        del c

        raises(TypeError, complex, "1", "1")
        raises(TypeError, complex, 1, "1")

        assert complex("  3.14+J  ") == 3.14+1j
        #h.assertEqual(complex(unicode("  3.14+J  ")), 3.14+1j)

        # SF bug 543840:  complex(string) accepts strings with \0
        # Fixed in 2.3.
        raises(ValueError, complex, '1+1j\0j')

        raises(TypeError, int, 5+3j)
        raises(TypeError, long, 5+3j)
        raises(TypeError, float, 5+3j)
        raises(ValueError, complex, "")
        raises(TypeError, complex, None)
        raises(ValueError, complex, "\0")
        raises(TypeError, complex, "1", "2")
        raises(TypeError, complex, "1", 42)
        raises(TypeError, complex, 1, "2")
        raises(ValueError, complex, "1+")
        raises(ValueError, complex, "1+1j+1j")
        raises(ValueError, complex, "--")
#        if x_test_support.have_unicode:
#            raises(ValueError, complex, unicode("1"*500))
#            raises(ValueError, complex, unicode("x"))
#
        class EvilExc(Exception):
            pass

        class evilcomplex:
            def __complex__(self):
                raise EvilExc

        raises(EvilExc, complex, evilcomplex())

        class float2:
            def __init__(self, value):
                self.value = value
            def __float__(self):
                return self.value

        assert self.almost_equal(complex(float2(42.)), 42)
        assert self.almost_equal(complex(real=float2(17.), imag=float2(23.)), 17+23j)
        raises(TypeError, complex, float2(None))

    def test___complex___returning_non_complex(self):
        import cmath
        class Obj(object):
            def __init__(self, value):
                self.value = value
            def __complex__(self):
                return self.value

        # "bug-to-bug" compatibility to CPython: complex() is more relaxed in
        # what __complex__ can return. cmath functions really wants a complex
        # number to be returned by __complex__.
        assert complex(Obj(2.0)) == 2+0j
        assert complex(Obj(2)) == 2+0j
        assert complex(Obj(2L)) == 2+0j
        #
        assert cmath.polar(1) == (1.0, 0.0)
        raises(TypeError, "cmath.polar(Obj(1))")
        

    def test_hash(self):
        for x in xrange(-30, 30):
            assert hash(x) == hash(complex(x, 0))
            x /= 3.0    # now check against floating point
            assert hash(x) == hash(complex(x, 0.))

    def test_abs(self):
        nums = [complex(x/3., y/7.) for x in xrange(-9,9) for y in xrange(-9,9)]
        for num in nums:
            assert self.almost_equal((num.real**2 + num.imag**2)  ** 0.5, abs(num))

    def test_complex_subclass_ctr(self):
        import sys
        class j(complex):
            pass
        assert j(100 + 0j) == 100 + 0j
        assert isinstance(j(100), j)
        assert j(100L + 0j) == 100 + 0j
        assert j("100 + 0j") == 100 + 0j
        x = j(1+0j)
        x.foo = 42
        assert x.foo == 42
        assert type(complex(x)) == complex

    def test_infinity(self):
        inf = 1e200*1e200
        assert complex("1"*500) == complex(inf)
        assert complex("-inf") == complex(-inf)

    def test_repr(self):
        assert repr(1+6j) == '(1+6j)'
        assert repr(1-6j) == '(1-6j)'

        assert repr(-(1+0j)) == '(-1-0j)'
        assert repr(complex( 0.0,  0.0)) == '0j'
        assert repr(complex( 0.0, -0.0)) == '-0j'
        assert repr(complex(-0.0,  0.0)) == '(-0+0j)'
        assert repr(complex(-0.0, -0.0)) == '(-0-0j)'
        assert repr(complex(1e45)) == "(" + repr(1e45) + "+0j)"
        assert repr(complex(1e200*1e200)) == '(inf+0j)'
        assert repr(complex(1,-float("nan"))) == '(1+nanj)'

    def test_neg(self):
        assert -(1+6j) == -1-6j

    def test_file(self):
        import os
        import tempfile

        a = 3.33+4.43j
        b = 5.1+2.3j

        fo = None
        try:
            pth = tempfile.mktemp()
            fo = open(pth,"wb")
            print >>fo, a, b
            fo.close()
            fo = open(pth, "rb")
            res = fo.read()
            assert res == "%s %s\n" % (a, b)
        finally:
            if (fo is not None) and (not fo.closed):
                fo.close()
            try:
                os.remove(pth)
            except (OSError, IOError):
                pass

    def test_convert(self):
        raises(TypeError, int, 1+1j)
        raises(TypeError, float, 1+1j)

        class complex0(complex):
            """Test usage of __complex__() when inheriting from 'complex'"""
            def __complex__(self):
                return 42j
        assert complex(complex0(1j)) ==  42j

        class complex1(complex):
            """Test usage of __complex__() with a __new__() method"""
            def __new__(self, value=0j):
                return complex.__new__(self, 2*value)
            def __complex__(self):
                return self
        assert complex(complex1(1j)) == 2j

        class complex2(complex):
            """Make sure that __complex__() calls fail if anything other than a
            complex is returned"""
            def __complex__(self):
                return None
        raises(TypeError, complex, complex2(1j))

    def test_getnewargs(self):
        assert (1+2j).__getnewargs__() == (1.0, 2.0)

    def test_method_not_found_on_newstyle_instance(self):
        class A(object):
            pass
        a = A()
        a.__complex__ = lambda: 5j     # ignored
        raises(TypeError, complex, a)
        A.__complex__ = lambda self: 42j
        assert complex(a) == 42j

    def test_format(self):
        # empty format string is same as str()
        assert format(1+3j, '') == str(1+3j)
        assert format(1.5+3.5j, '') == str(1.5+3.5j)
        assert format(3j, '') == str(3j)
        assert format(3.2j, '') == str(3.2j)
        assert format(3+0j, '') == str(3+0j)
        assert format(3.2+0j, '') == str(3.2+0j)

        # empty presentation type should still be analogous to str,
        # even when format string is nonempty (issue #5920).

        assert format(3.2, '-') == str(3.2)
        assert format(3.2+0j, '-') == str(3.2+0j)
        assert format(3.2+0j, '<') == str(3.2+0j)
        z = 10/7. - 100j/7.
        assert format(z, '') == str(z)
        assert format(z, '-') == str(z)
        assert format(z, '<') == str(z)
        assert format(z, '10') == str(z)
        z = complex(0.0, 3.0)
        assert format(z, '') == str(z)
        assert format(z, '-') == str(z)
        assert format(z, '<') == str(z)
        assert format(z, '2') == str(z)
        z = complex(-0.0, 2.0)
        assert format(z, '') == str(z)
        assert format(z, '-') == str(z)
        assert format(z, '<') == str(z)
        assert format(z, '3') == str(z)

        assert format(1+3j, 'g') == '1+3j'
        assert format(3j, 'g') == '0+3j'
        assert format(1.5+3.5j, 'g') == '1.5+3.5j'

        assert format(1.5+3.5j, '+g') == '+1.5+3.5j'
        assert format(1.5-3.5j, '+g') == '+1.5-3.5j'
        assert format(1.5-3.5j, '-g') == '1.5-3.5j'
        assert format(1.5+3.5j, ' g') == ' 1.5+3.5j'
        assert format(1.5-3.5j, ' g') == ' 1.5-3.5j'
        assert format(-1.5+3.5j, ' g') == '-1.5+3.5j'
        assert format(-1.5-3.5j, ' g') == '-1.5-3.5j'

        assert format(-1.5-3.5e-20j, 'g') == '-1.5-3.5e-20j'
        assert format(-1.5-3.5j, 'f') == '-1.500000-3.500000j'
        assert format(-1.5-3.5j, 'F') == '-1.500000-3.500000j'
        assert format(-1.5-3.5j, 'e') == '-1.500000e+00-3.500000e+00j'
        assert format(-1.5-3.5j, '.2e') == '-1.50e+00-3.50e+00j'
        assert format(-1.5-3.5j, '.2E') == '-1.50E+00-3.50E+00j'
        assert format(-1.5e10-3.5e5j, '.2G') == '-1.5E+10-3.5E+05j'

        assert format(1.5+3j, '<20g') ==  '1.5+3j              '
        assert format(1.5+3j, '*<20g') == '1.5+3j**************'
        assert format(1.5+3j, '>20g') ==  '              1.5+3j'
        assert format(1.5+3j, '^20g') ==  '       1.5+3j       '
        assert format(1.5+3j, '<20') ==   '(1.5+3j)            '
        assert format(1.5+3j, '>20') ==   '            (1.5+3j)'
        assert format(1.5+3j, '^20') ==   '      (1.5+3j)      '
        assert format(1.123-3.123j, '^20.2') == '     (1.1-3.1j)     '

        assert format(1.5+3j, '20.2f') == '          1.50+3.00j'
        assert format(1.5+3j, '>20.2f') == '          1.50+3.00j'
        assert format(1.5+3j, '<20.2f') == '1.50+3.00j          '
        assert format(1.5e20+3j, '<20.2f') == '150000000000000000000.00+3.00j'
        assert format(1.5e20+3j, '>40.2f') == '          150000000000000000000.00+3.00j'
        assert format(1.5e20+3j, '^40,.2f') == '  150,000,000,000,000,000,000.00+3.00j  '
        assert format(1.5e21+3j, '^40,.2f') == ' 1,500,000,000,000,000,000,000.00+3.00j '
        assert format(1.5e21+3000j, ',.2f') == '1,500,000,000,000,000,000,000.00+3,000.00j'

        # alternate is invalid
        raises(ValueError, (1.5+0.5j).__format__, '#f')

        # zero padding is invalid
        raises(ValueError, (1.5+0.5j).__format__, '010f')

        # '=' alignment is invalid
        raises(ValueError, (1.5+3j).__format__, '=20')

        # integer presentation types are an error
        for t in 'bcdoxX%':
            raises(ValueError, (1.5+0.5j).__format__, t)

        # make sure everything works in ''.format()
        assert '*{0:.3f}*'.format(3.14159+2.71828j) == '*3.142+2.718j*'
        assert u'*{0:.3f}*'.format(3.14159+2.71828j) == u'*3.142+2.718j*'
        assert u'{:-}'.format(1.5+3.5j) == u'(1.5+3.5j)'

        INF = float("inf")
        NAN = float("nan")
        # issue 3382: 'f' and 'F' with inf's and nan's
        assert '{0:f}'.format(INF+0j) == 'inf+0.000000j'
        assert '{0:F}'.format(INF+0j) == 'INF+0.000000j'
        assert '{0:f}'.format(-INF+0j) == '-inf+0.000000j'
        assert '{0:F}'.format(-INF+0j) == '-INF+0.000000j'
        assert '{0:f}'.format(complex(INF, INF)) == 'inf+infj'
        assert '{0:F}'.format(complex(INF, INF)) == 'INF+INFj'
        assert '{0:f}'.format(complex(INF, -INF)) == 'inf-infj'
        assert '{0:F}'.format(complex(INF, -INF)) == 'INF-INFj'
        assert '{0:f}'.format(complex(-INF, INF)) == '-inf+infj'
        assert '{0:F}'.format(complex(-INF, INF)) == '-INF+INFj'
        assert '{0:f}'.format(complex(-INF, -INF)) == '-inf-infj'
        assert '{0:F}'.format(complex(-INF, -INF)) == '-INF-INFj'

        assert '{0:f}'.format(complex(NAN, 0)) == 'nan+0.000000j'
        assert '{0:F}'.format(complex(NAN, 0)) == 'NAN+0.000000j'
        assert '{0:f}'.format(complex(NAN, NAN)) == 'nan+nanj'
        assert '{0:F}'.format(complex(NAN, NAN)) == 'NAN+NANj'

    def test_complex_two_arguments(self):
        raises(TypeError, complex, 5, None)
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.