mino-pypy / pypy / rlib / objectmodel.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
"""
This file defines utilities for manipulating objects in an
RPython-compliant way.
"""

from __future__ import absolute_import

import py
import sys
import types
import math
import inspect
from pypy.tool.sourcetools import rpython_wrapper

# specialize is a decorator factory for attaching _annspecialcase_
# attributes to functions: for example
#
# f._annspecialcase_ = 'specialize:memo' can be expressed with:
# @specialize.memo()
# def f(...
#
# f._annspecialcase_ = 'specialize:arg(0)' can be expressed with:
# @specialize.arg(0)
# def f(...
#

from pypy.rpython.extregistry import ExtRegistryEntry

class _Specialize(object):
    def memo(self):
        """ Specialize the function based on argument values.  All arguments
        have to be either constants or PBCs (i.e. instances of classes with a
        _freeze_ method returning True).  The function call is replaced by
        just its result, or in case several PBCs are used, by some fast
        look-up of the result.
        """
        def decorated_func(func):
            func._annspecialcase_ = 'specialize:memo'
            return func
        return decorated_func

    def arg(self, *args):
        """ Specialize the function based on the values of given positions
        of arguments.  They must be compile-time constants in order to work.

        There will be a copy of provided function for each combination
        of given arguments on positions in args (that can lead to
        exponential behavior!).
        """
        def decorated_func(func):
            func._annspecialcase_ = 'specialize:arg' + self._wrap(args)
            return func

        return decorated_func

    def arg_or_var(self, *args):
        """ Same as arg, but additionally allow for a 'variable' annotation,
        that would simply be a situation where designated arg is not
        a constant
        """
        def decorated_func(func):
            func._annspecialcase_ = 'specialize:arg_or_var' + self._wrap(args)
            return func

        return decorated_func

    def argtype(self, *args):
        """ Specialize function based on types of arguments on given positions.

        There will be a copy of provided function for each combination
        of given arguments on positions in args (that can lead to
        exponential behavior!).
        """
        def decorated_func(func):
            func._annspecialcase_ = 'specialize:argtype' + self._wrap(args)
            return func

        return decorated_func

    def ll(self):
        """ This is version of argtypes that cares about low-level types
        (so it'll get additional copies for two different types of pointers
        for example). Same warnings about exponential behavior apply.
        """
        def decorated_func(func):
            func._annspecialcase_ = 'specialize:ll'
            return func

        return decorated_func

    def ll_and_arg(self, *args):
        """ This is like ll(), and additionally like arg(...).
        """
        def decorated_func(func):
            func._annspecialcase_ = 'specialize:ll_and_arg' + self._wrap(args)
            return func

        return decorated_func

    def call_location(self):
        """ Specializes the function for each call site.
        """
        def decorated_func(func):
            func._annspecialcase_ = "specialize:call_location"
            return func

        return decorated_func

    def _wrap(self, args):
        return "("+','.join([repr(arg) for arg in args]) +")"

specialize = _Specialize()

def enforceargs(*types_, **kwds):
    """ Decorate a function with forcing of RPython-level types on arguments.
    None means no enforcing.

    When not translated, the type of the actual arguments are checked against
    the enforced types every time the function is called. You can disable the
    typechecking by passing ``typecheck=False`` to @enforceargs.
    """
    typecheck = kwds.pop('typecheck', True)
    if types_ and kwds:
        raise TypeError, 'Cannot mix positional arguments and keywords'

    if not typecheck:
        def decorator(f):
            f._annenforceargs_ = types_
            return f
        return decorator
    #
    def decorator(f):
        def get_annotation(t):
            from pypy.annotation.signature import annotation
            from pypy.annotation.model import SomeObject, SomeStringOrUnicode
            if isinstance(t, SomeObject):
                return t
            s_result = annotation(t)
            if isinstance(s_result, SomeStringOrUnicode):
                return s_result.__class__(can_be_None=True)
            return s_result
        def get_type_descr_of_argument(arg):
            # we don't want to check *all* the items in list/dict: we assume
            # they are already homogeneous, so we only check the first
            # item. The case of empty list/dict is handled inside typecheck()
            if isinstance(arg, list):
                item = arg[0]
                return [get_type_descr_of_argument(item)]
            elif isinstance(arg, dict):
                key, value = next(arg.iteritems())
                return {get_type_descr_of_argument(key): get_type_descr_of_argument(value)}
            else:
                return type(arg)
        def typecheck(*args):
            from pypy.annotation.model import SomeList, SomeDict, SomeChar
            for i, (expected_type, arg) in enumerate(zip(types, args)):
                if expected_type is None:
                    continue
                s_expected = get_annotation(expected_type)
                # special case: if we expect a list or dict and the argument
                # is an empty list/dict, the typecheck always pass
                if isinstance(s_expected, SomeList) and arg == []:
                    continue
                if isinstance(s_expected, SomeDict) and arg == {}:
                    continue
                if isinstance(s_expected, SomeChar) and (
                        isinstance(arg, str) and len(arg) == 1):   # a char
                    continue
                #
                s_argtype = get_annotation(get_type_descr_of_argument(arg))
                if not s_expected.contains(s_argtype):
                    msg = "%s argument %r must be of type %s" % (
                        f.func_name, srcargs[i], expected_type)
                    raise TypeError, msg
        #
        template = """
            def {name}({arglist}):
                if not we_are_translated():
                    typecheck({arglist})    # pypy.rlib.objectmodel
                return {original}({arglist})
        """
        result = rpython_wrapper(f, template,
                                 typecheck=typecheck,
                                 we_are_translated=we_are_translated)
        #
        srcargs, srcvarargs, srckeywords, defaults = inspect.getargspec(f)
        if kwds:
            types = tuple([kwds.get(arg) for arg in srcargs])
        else:
            types = types_
        assert len(srcargs) == len(types), (
            'not enough types provided: expected %d, got %d' %
            (len(types), len(srcargs)))
        result._annenforceargs_ = types
        return result
    return decorator



# ____________________________________________________________

class Symbolic(object):

    def annotation(self):
        return None

    def lltype(self):
        return None

    def __cmp__(self, other):
        if self is other:
            return 0
        else:
            raise TypeError("Symbolics cannot be compared! (%r, %r)"
                            % (self, other))

    def __hash__(self):
        raise TypeError("Symbolics are not hashable! %r" % (self,))

    def __nonzero__(self):
        raise TypeError("Symbolics are not comparable! %r" % (self,))

class ComputedIntSymbolic(Symbolic):

    def __init__(self, compute_fn):
        self.compute_fn = compute_fn

    def __repr__(self):
        # repr(self.compute_fn) can arrive back here in an
        # infinite recursion
        try:
            name = self.compute_fn.__name__
        except (AttributeError, TypeError):
            name = hex(id(self.compute_fn))
        return '%s(%r)' % (self.__class__.__name__, name)

    def annotation(self):
        from pypy.annotation import model
        return model.SomeInteger()

    def lltype(self):
        from pypy.rpython.lltypesystem import lltype
        return lltype.Signed

class CDefinedIntSymbolic(Symbolic):

    def __init__(self, expr, default=0):
        self.expr = expr
        self.default = default

    def __repr__(self):
        return '%s(%r)' % (self.__class__.__name__, self.expr)

    def annotation(self):
        from pypy.annotation import model
        return model.SomeInteger()

    def lltype(self):
        from pypy.rpython.lltypesystem import lltype
        return lltype.Signed

malloc_zero_filled = CDefinedIntSymbolic('MALLOC_ZERO_FILLED', default=0)
running_on_llinterp = CDefinedIntSymbolic('RUNNING_ON_LLINTERP', default=1)
# running_on_llinterp is meant to have the value 0 in all backends

# ____________________________________________________________

def instantiate(cls):
    "Create an empty instance of 'cls'."
    if isinstance(cls, type):
        return cls.__new__(cls)
    else:
        return types.InstanceType(cls)

def we_are_translated():
    return False
# annotation -> True (replaced by the flow objspace)

def keepalive_until_here(*values):
    pass

def is_annotation_constant(thing):
    """ Returns whether the annotator can prove that the argument is constant.
    For advanced usage only."""
    return True

class Entry(ExtRegistryEntry):
    _about_ = is_annotation_constant

    def compute_result_annotation(self, s_arg):
        from pypy.annotation import model
        r = model.SomeBool()
        r.const = s_arg.is_constant()
        return r

    def specialize_call(self, hop):
        from pypy.rpython.lltypesystem import lltype
        hop.exception_cannot_occur()
        return hop.inputconst(lltype.Bool, hop.s_result.const)

# ____________________________________________________________

class FREED_OBJECT(object):
    def __getattribute__(self, attr):
        raise RuntimeError("trying to access freed object")
    def __setattr__(self, attr, value):
        raise RuntimeError("trying to access freed object")


def free_non_gc_object(obj):
    assert not getattr(obj.__class__, "_alloc_flavor_", 'gc').startswith('gc'), "trying to free gc object"
    obj.__dict__ = {}
    obj.__class__ = FREED_OBJECT

# ____________________________________________________________

def newlist_hint(sizehint=0):
    """ Create a new list, but pass a hint how big the size should be
    preallocated
    """
    return []

class Entry(ExtRegistryEntry):
    _about_ = newlist_hint

    def compute_result_annotation(self, s_sizehint):
        from pypy.annotation.model import SomeInteger

        assert isinstance(s_sizehint, SomeInteger)
        s_l = self.bookkeeper.newlist()
        s_l.listdef.listitem.resize()
        return s_l

    def specialize_call(self, orig_hop, i_sizehint=None):
        from pypy.rpython.rlist import rtype_newlist
        # fish a bit hop
        hop = orig_hop.copy()
        v = hop.args_v[0]
        r, s = hop.r_s_popfirstarg()
        if s.is_constant():
            v = hop.inputconst(r, s.const)
        hop.exception_is_here()
        return rtype_newlist(hop, v_sizehint=v)

def resizelist_hint(l, sizehint):
    """Reallocate the underlying list to the specified sizehint"""
    return

class Entry(ExtRegistryEntry):
    _about_ = resizelist_hint

    def compute_result_annotation(self, s_l, s_sizehint):
        from pypy.annotation import model as annmodel
        assert isinstance(s_l, annmodel.SomeList)
        assert isinstance(s_sizehint, annmodel.SomeInteger)
        s_l.listdef.listitem.resize()

    def specialize_call(self, hop):
        r_list = hop.args_r[0]
        v_list, v_sizehint = hop.inputargs(*hop.args_r)
        hop.exception_is_here()
        hop.gendirectcall(r_list.LIST._ll_resize_hint, v_list, v_sizehint)

# ____________________________________________________________
#
# id-like functions.  The idea is that calling hash() or id() is not
# allowed in RPython.  You have to call one of the following more
# precise functions.

def compute_hash(x):
    """RPython equivalent of hash(x), where 'x' is an immutable
    RPython-level.  For strings or unicodes it computes the hash as
    in Python.  For tuples it calls compute_hash() recursively.
    For instances it uses compute_identity_hash().

    Note that this can return 0 or -1 too.

    Behavior across translation:

      * on lltypesystem, it always returns the same number, both
        before and after translation.  Dictionaries don't need to
        be rehashed after translation.

      * on ootypesystem, the value changes because of translation.
        Dictionaries need to be rehashed.
    """
    if isinstance(x, (str, unicode)):
        return _hash_string(x)
    if isinstance(x, int):
        return x
    if isinstance(x, float):
        return _hash_float(x)
    if isinstance(x, tuple):
        return _hash_tuple(x)
    if x is None:
        return 0
    return compute_identity_hash(x)

def compute_identity_hash(x):
    """RPython equivalent of object.__hash__(x).  This returns the
    so-called 'identity hash', which is the non-overridable default hash
    of Python.  Can be called for any RPython-level object that turns
    into a GC object, but not NULL.  The value is not guaranteed to be the
    same before and after translation, except for RPython instances on the
    lltypesystem.
    """
    assert x is not None
    result = object.__hash__(x)
    try:
        x.__dict__['__precomputed_identity_hash'] = result
    except (TypeError, AttributeError):
        pass
    return result

def compute_unique_id(x):
    """RPython equivalent of id(x).  The 'x' must be an RPython-level
    object that turns into a GC object.  This operation can be very
    costly depending on the garbage collector.  To remind you of this
    fact, we don't support id(x) directly.
    (XXX not implemented on ootype, falls back to compute_identity_hash)
    """
    return id(x)      # XXX need to return r_longlong on some platforms

def current_object_addr_as_int(x):
    """A cheap version of id(x).  The current memory location of an
    object can change over time for moving GCs.  Also note that on
    ootypesystem this typically doesn't return the real address but
    just the same as compute_hash(x).
    """
    from pypy.rlib.rarithmetic import intmask
    return intmask(id(x))

# ----------

def _hash_string(s):
    """The algorithm behind compute_hash() for a string or a unicode."""
    from pypy.rlib.rarithmetic import intmask
    length = len(s)
    if length == 0:
        return -1
    x = ord(s[0]) << 7
    i = 0
    while i < length:
        x = intmask((1000003*x) ^ ord(s[i]))
        i += 1
    x ^= length
    return intmask(x)

def _hash_float(f):
    """The algorithm behind compute_hash() for a float.
    This implementation is identical to the CPython implementation,
    except the fact that the integer case is not treated specially.
    In RPython, floats cannot be used with ints in dicts, anyway.
    """
    from pypy.rlib.rarithmetic import intmask
    from pypy.rlib.rfloat import isfinite, isinf
    if not isfinite(f):
        if isinf(f):
            if f < 0.0:
                return -271828
            else:
                return 314159
        else: #isnan(f):
            return 0
    v, expo = math.frexp(f)
    v *= TAKE_NEXT
    hipart = int(v)
    v = (v - float(hipart)) * TAKE_NEXT
    x = hipart + int(v) + (expo << 15)
    return intmask(x)
TAKE_NEXT = float(2**31)

def _hash_tuple(t):
    """NOT_RPYTHON.  The algorithm behind compute_hash() for a tuple.
    It is modelled after the old algorithm of Python 2.3, which is
    a bit faster than the one introduced by Python 2.4.  We assume
    that nested tuples are very uncommon in RPython, making the bad
    case unlikely.
    """
    from pypy.rlib.rarithmetic import intmask
    x = 0x345678
    for item in t:
        y = compute_hash(item)
        x = intmask((1000003 * x) ^ y)
    return x

# ----------

class Entry(ExtRegistryEntry):
    _about_ = compute_hash

    def compute_result_annotation(self, s_x):
        from pypy.annotation import model as annmodel
        return annmodel.SomeInteger()

    def specialize_call(self, hop):
        r_obj, = hop.args_r
        v_obj, = hop.inputargs(r_obj)
        ll_fn = r_obj.get_ll_hash_function()
        hop.exception_is_here()
        return hop.gendirectcall(ll_fn, v_obj)

class Entry(ExtRegistryEntry):
    _about_ = compute_identity_hash

    def compute_result_annotation(self, s_x):
        from pypy.annotation import model as annmodel
        return annmodel.SomeInteger()

    def specialize_call(self, hop):
        from pypy.rpython.lltypesystem import lltype
        vobj, = hop.inputargs(hop.args_r[0])
        if hop.rtyper.type_system.name == 'lltypesystem':
            ok = (isinstance(vobj.concretetype, lltype.Ptr) and
                  vobj.concretetype.TO._gckind == 'gc')
        else:
            from pypy.rpython.ootypesystem import ootype
            ok = isinstance(vobj.concretetype, ootype.OOType)
        if not ok:
            from pypy.rpython.error import TyperError
            raise TyperError("compute_identity_hash() cannot be applied to"
                             " %r" % (vobj.concretetype,))
        hop.exception_cannot_occur()
        return hop.genop('gc_identityhash', [vobj], resulttype=lltype.Signed)

class Entry(ExtRegistryEntry):
    _about_ = compute_unique_id

    def compute_result_annotation(self, s_x):
        from pypy.annotation import model as annmodel
        return annmodel.SomeInteger()

    def specialize_call(self, hop):
        from pypy.rpython.lltypesystem import lltype
        vobj, = hop.inputargs(hop.args_r[0])
        if hop.rtyper.type_system.name == 'lltypesystem':
            ok = (isinstance(vobj.concretetype, lltype.Ptr) and
                  vobj.concretetype.TO._gckind == 'gc')
        else:
            from pypy.rpython.ootypesystem import ootype
            ok = isinstance(vobj.concretetype, (ootype.Instance, ootype.BuiltinType))
        if not ok:
            from pypy.rpython.error import TyperError
            raise TyperError("compute_unique_id() cannot be applied to"
                             " %r" % (vobj.concretetype,))
        hop.exception_cannot_occur()
        return hop.genop('gc_id', [vobj], resulttype=lltype.Signed)

class Entry(ExtRegistryEntry):
    _about_ = current_object_addr_as_int

    def compute_result_annotation(self, s_x):
        from pypy.annotation import model as annmodel
        return annmodel.SomeInteger()

    def specialize_call(self, hop):
        vobj, = hop.inputargs(hop.args_r[0])
        hop.exception_cannot_occur()
        if hop.rtyper.type_system.name == 'lltypesystem':
            from pypy.rpython.lltypesystem import lltype
            if isinstance(vobj.concretetype, lltype.Ptr):
                return hop.genop('cast_ptr_to_int', [vobj],
                                 resulttype = lltype.Signed)
        elif hop.rtyper.type_system.name == 'ootypesystem':
            from pypy.rpython.ootypesystem import ootype
            if isinstance(vobj.concretetype, ootype.Instance):
                return hop.genop('gc_identityhash', [vobj],
                                 resulttype = ootype.Signed)
        from pypy.rpython.error import TyperError
        raise TyperError("current_object_addr_as_int() cannot be applied to"
                         " %r" % (vobj.concretetype,))

# ____________________________________________________________

def hlinvoke(repr, llcallable, *args):
    raise TypeError, "hlinvoke is meant to be rtyped and not called direclty"

def invoke_around_extcall(before, after):
    """Call before() before any external function call, and after() after.
    At the moment only one pair before()/after() can be registered at a time.
    """
    # NOTE: the hooks are cleared during translation!  To be effective
    # in a compiled program they must be set at run-time.
    from pypy.rpython.lltypesystem import rffi
    rffi.aroundstate.before = before
    rffi.aroundstate.after = after
    # the 'aroundstate' contains regular function and not ll pointers to them,
    # but let's call llhelper() anyway to force their annotation
    from pypy.rpython.annlowlevel import llhelper
    llhelper(rffi.AroundFnPtr, before)
    llhelper(rffi.AroundFnPtr, after)

def is_in_callback():
    from pypy.rpython.lltypesystem import rffi
    return rffi.stackcounter.stacks_counter > 1


class UnboxedValue(object):
    """A mixin class to use for classes that have exactly one field which
    is an integer.  They are represented as a tagged pointer, if the
    translation.taggedpointers config option is used."""
    _mixin_ = True

    def __new__(cls, value):
        assert '__init__' not in cls.__dict__  # won't be called anyway
        assert isinstance(cls.__slots__, str) or len(cls.__slots__) == 1
        return super(UnboxedValue, cls).__new__(cls)

    def __init__(self, value):
        # this funtion is annotated but not included in the translated program
        int_as_pointer = value * 2 + 1   # XXX for now
        if -sys.maxint-1 <= int_as_pointer <= sys.maxint:
            if isinstance(self.__class__.__slots__, str):
                setattr(self, self.__class__.__slots__, value)
            else:
                setattr(self, self.__class__.__slots__[0], value)
        else:
            raise OverflowError("UnboxedValue: argument out of range")

    def __repr__(self):
        return '<unboxed %d>' % (self.get_untagged_value(),)

    def get_untagged_value(self):   # helper, equivalent to reading the custom field
        if isinstance(self.__class__.__slots__, str):
            return getattr(self, self.__class__.__slots__)
        else:
            return getattr(self, self.__class__.__slots__[0])

# ____________________________________________________________


class r_dict(object):
    """An RPython dict-like object.
    Only provides the interface supported by RPython.
    The functions key_eq() and key_hash() are used by the key comparison
    algorithm."""

    def __init__(self, key_eq, key_hash, force_non_null=False):
        self._dict = {}
        self.key_eq = key_eq
        self.key_hash = key_hash
        self.force_non_null = force_non_null

    def __getitem__(self, key):
        return self._dict[_r_dictkey(self, key)]

    def __setitem__(self, key, value):
        self._dict[_r_dictkey(self, key)] = value

    def __delitem__(self, key):
        del self._dict[_r_dictkey(self, key)]

    def __len__(self):
        return len(self._dict)

    def __iter__(self):
        for dk in self._dict:
            yield dk.key

    def __contains__(self, key):
        return _r_dictkey(self, key) in self._dict

    def get(self, key, default):
        return self._dict.get(_r_dictkey(self, key), default)

    def setdefault(self, key, default):
        return self._dict.setdefault(_r_dictkey(self, key), default)

    def popitem(self):
        dk, value = self._dict.popitem()
        return dk.key, value

    def copy(self):
        result = r_dict(self.key_eq, self.key_hash)
        result.update(self)
        return result

    def update(self, other):
        for key, value in other.items():
            self[key] = value

    def keys(self):
        return [dk.key for dk in self._dict]

    def values(self):
        return self._dict.values()

    def items(self):
        return [(dk.key, value) for dk, value in self._dict.items()]

    iterkeys = __iter__

    def itervalues(self):
        return self._dict.itervalues()

    def iteritems(self):
        for dk, value in self._dict.items():
            yield dk.key, value

    def clear(self):
        self._dict.clear()

    def __repr__(self):
        "Representation for debugging purposes."
        return 'r_dict(%r)' % (self._dict,)

    def __hash__(self):
        raise TypeError("cannot hash r_dict instances")


class _r_dictkey(object):
    __slots__ = ['dic', 'key', 'hash']
    def __init__(self, dic, key):
        self.dic = dic
        self.key = key
        self.hash = dic.key_hash(key)
    def __eq__(self, other):
        if not isinstance(other, _r_dictkey):
            return NotImplemented
        return self.dic.key_eq(self.key, other.key)
    def __ne__(self, other):
        if not isinstance(other, _r_dictkey):
            return NotImplemented
        return not self.dic.key_eq(self.key, other.key)
    def __hash__(self):
        return self.hash

    def __repr__(self):
        return repr(self.key)

class _r_dictkey_with_hash(_r_dictkey):
    def __init__(self, dic, key, hash):
        self.dic = dic
        self.key = key
        self.hash = hash
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.