CPU

- Optimized to process a single sequence of instructions
- Extremely fast – clock speed reflects speed of operations
 - Not getting a lot faster
 - memory latency
 - power
 - sequential processing
- We’re still very good at adding transistors
- Current trend: instead of doing something faster, do more things

Limitations on CPU computing

• Memory wall
 • CPU clock is much faster than memory latency
 • Main memory is stored outside the CPU
 • Bottleneck is bandwidth between the two

• Power wall
 • Moore’s law: transistor density increases over time
 • Dennard scaling: as transistors get smaller, so do power requirements
 • Current leakage: tradeoffs aren’t equal – power per unit area is increasing

• Instruction Level Parallelism wall
Instruction Level Parallelism

• Instruction level parallelism (ILP) wall
 • Speed increases in CPUs rely on finding parallelism within a single thread

pipelining

execution over time

program queue

fetch decode execute write

pipeline

completed operations

speculative execution

1) int sign;
2) if(x == NaN)
 3) sign = x;
4) else if(x == 0)
 5) sign = 0;
6) else
 7) sign = x/abs(x);

• (7) requires an arithmetic operation and is most likely to require an arithmetic operation and is most likely
• Execute (7) while (2) and (4) are tested

out-of-order execution

1) e = a + b;
2) f = c + d;
3) m = e * f;
 • (3) is the only line with a dependence
 • (1) and (2) can be executed in parallel
Speedup

• Dependencies limit the amount of ILP in any program
• Ultimate goal is to achieve *speedup*
 • reduce the processing time for the same problem

• Given a process that requires time T_1
 • calculate the job in a shorter time $T_2 < T_1$
 • linear speedup (generally ideal) would allow $T_2 \approx \frac{T}{P}$
 • where P is the number of processors
 • superlinear speedup \(T_2 < \frac{T_1}{P} \) is possible
 • usually memory fetch gains: increased cache hits, cache coherence
Parallelism in High Performance Computing

• Two ways to achieve true parallelism to solve a problem

Given P processors:

• *task parallelism*: break the problem up into $T \geq P$ tasks and pass them each off to a processor

• *data parallelism*: break your input/output data into $D \geq P$ subsets and launch one thread $T = D$ for each piece of data
Task Parallelism

• Divide your problem up into T tasks
 • assign the first P tasks to a processor
 • when any processor finishes a task T_n, move on to task T_{P+1}
 • repeat until all tasks are completed

• Tasks are ideally independent – the result of one does not change based on the result of another
 • when one task finished, does it matter which one you start? (ideally NO)
 • if so, can you arrange for them to run in the correct order (ideally YES)
 • if not, task T_n can either
 • wait for it’s dependent task to complete (you lose the processor during this time)
 • copy the current state of the task into main memory and start another process
 • how would you make this decision?
 • whenever it takes more time to store (+ later load) the task state to continue processing
Task Parallelism – Current Use

• this is the multi-core CPU model: you can play Hearthstone and watch Netflix while your homework runs in the background

• this has generally been the primary model for cluster computing and supercomputing
Data Parallelism

• Partition your data
 • send the first P threads on different processors
 • once any thread T_n completes, launch another thread
 • repeat until all threads have completed

• single instruction multiple data (SIMD)
 • all cores execute the same instruction
 • different data can be used (register, memory address, etc.)

• Advantages
 • your processors can be slower, simpler, smaller – you can have more of them
 • data can often be stored close to the processor
SIMD principles

Assume $N = 5000$ array elements

- **Program A**
 1) for($i = 0; i < N; i$){
 2) $C[i] = A[i] + B[i];$
 3) }

 - Assume 1 copy/add takes 1 clock cycle. How much time is required for N processors?
 ≈ 1 clock cycle (plus any overhead launching the threads, writing results)

- **Program B**
 1) for($i = 0; i < N; i$){
 2) $c = A[i] + B[i];$
 3) if($c > 100$)
 4) $A[i] = c;$
 5) else
 7) }

 - Assume a comparison also takes 1 cycle. How much time is required for N SIMD processors?
 ≈ 4 clock cycles – all threads have to execute the same instruction
 - If $c > 100$ for half of the threads, the other half do nothing while line (4) executes
Practical considerations

- Not all algorithms work well on GPUs
 - Processors are slower
 - No instruction level parallelism
 - Best with a lot of data parallelism

- Algorithms that work well on GPUs:
 - Large loops that do similar things
 - Regular memory access patterns
 - Examples: linear algebra, convolution and stencil operations

- Algorithms that don’t work well on GPUs:
 - Irregular memory accesses, loops where each iteration is dependent on previous iterations
 - Searching and sorting – particularly of small data sets
 - Graph algorithms
Practical considerations

- **Heterogeneous computing**: Using different types of processors to optimize complex algorithms
- Most modern supercomputers have GPUs connected to clusters of CPUs
 - Blue Waters (NCSA/Illinois supercomputer)
 - 22,640 CPU (XE) nodes with 362,240 cores
 - 4,228 CPU+GPU (XK) nodes, each containing:
 - 8 core CPU
 - 1 nVidia Tesla K20X (Kepler) GPUs
- The goal of this class is to teach you heterogeneous computing
 - Design an algorithm with heterogeneous computing in mind
 - Prototype using a CPU-based implementation
 - Move select pieces to the GPU
 - Optimize both GPU and CPU portions
Heterogeneous Computing Examples

• Calculate the ℓ_1-norm of the sum of two large vectors:

$$c = \|a + b\|_1$$

the ℓ_1-norm is defined as:

$$\|x\|_1 = \sum_{i=1}^{N} |x_i|$$

data parallelism:

$$a[i] + b[i] = c[i]$$

sequential operation

$$c_1 + c_2 + \cdots + c_N$$

any options?

CPU serial

binary addition → CPU
Heterogeneous Computing Examples

- Calculate the inverse of the outer product of two vectors:

$$(xx^T)^{-1}$$

$$\begin{pmatrix} x_1 & \cdots & x_N \\ \vdots & \ddots & \vdots \\ x_N & & x_N \end{pmatrix}^{-1}$$

Data parallelism:
- $x_{ij} = x_i x_j$
- Also symmetric
- $x_{ij} = x_{ji} = x_i x_j$

Several dependencies
- Common CPU and supercomputing benchmark
Guiding principles

• For a serial process, the CPU will almost always be faster
 • almost always split these off to a CPU
• For small data, the CPU will almost always be faster
 • reduce data through parallel processing with the GPU
 • hand off final calculations to the GPU
• The CPU compiler is usually smarter
 • good at optimizing code, reducing instruction count
 • cache management
• On the GPU, every instruction is important
 • thread divergence – stalls introduced because some threads require execution of an instruction that others do not
 • problem areas include:
 • if statements
 • loops with variable numbers of iterations
Physical Comparisons

CPU – i7 6970HQ
- 14nm lithography
- 4 cores
- $\approx 82\text{mm}^2$
- 2.8Ghz clock
- **Memory:**
 - 64GB main memory
 - 8MB L3
 - 256KB / core L2

GPU – Tesla P100
- 16nm lithography
- 56 multiprocessors
 - FP32 cores/SM = 64
 - FP64 cores/SM = 32
 - Theoretical load (cores)
 - 3584 FP32 cores
 - 1792 FP64 cores
- $\approx 610\text{mm}^2$
- 1.3Ghz clock
- **Memory:**
 - 16GB device memory
 - 4MB L2
 - 256KB / SM register file
Computational power is measured in Floating Point Operations per Second (FLOPS)

- Common units are giga-FLOP (GFLOPS) and tera-FLOPS (TFLOPS)
 - Intel Core i7-6700K ≈ 113 GFLOPS (10^9)
 - nVidia GeForce GTX 980 ≈ 5000 TFLOPS (10^{12})
 - nVidia GeForce GTX 1080 ≈ 9000 TFLOPS (10^{12})
 - Blue Waters (NCSA, Illinois) ≈ 13.3 petaFLOPS (10^{15})

Theoretical limitations, assuming full utilization

Practical limits:

- Data transfers from CPU (main memory) to the GPU
- Memory latency – time required to read data for processing
 - Access patterns can take affect caching
 - Cache hit – memory fetch is stored close to the processor in a cache
 - Cache miss – have to wait for a value to be retrieved from main memory
 - GPUs have different types of memory (low and high latency)
- Occupancy – how many processors are being used
 - Thread divergence – some threads are waiting for others
 - Register limits – not enough registers to maximize # of threads
Memory Latency and Bandwidth

• *fetch* – request for a piece of data from memory
• *latency* – length of time between the fetch and receiving the first element of data
• *bandwidth* – how much data can be transferred in a given time

• Intel Skylake
 • memory latency ≈ 42 clock cycles
 • memory bandwidth ≈ 34 GB/s

• L2 cache latency ≈ 12 clock cycles
• L1 cache latency ≈ 4 clock cycles
Intel i7 CPU

- Core 1
- Core 4
- L3 Cache (shared)
- L1
- L2
- to RAM (off chip)
Memory Latency and Bandwidth

• Trade-offs
 • latency is correlated to distance from the processor
 • shorter distance provides lower latency
 • latency is inversely correlated to physical size
 • larger memory provides higher latency
 • these are related: as memory banks increase in size, individual banks have to be placed further away from the processor

• Shared access
 • All cores have access to the same off-chip RAM and L3 cache
 • Each core has its own L1 and L2 cache
 • So, if each core wanted fast access to the same value, a separate copy would have to be stored in each L1 cache

• These complexities result from optimizing distance + latency
• GPUs choose a different optimization technique
nVidia GPU model

Each GPU Contains
• Global memory bank
• Several Streaming Multiprocessors
 • a bank of shared memory
 • shared memory to all cores on the chip
 • a register file
 • used to allocate registers across cores
 • multiple cores
 • each core can run at least one thread
 • 63 32-bit registers for calculations
 • note: cores cannot access registers allocated to other cores
nVidia GPU model

nVidia GeForce GTX 970
- 4 GB Global Memory
- 13 SMs
 - 128 cores
 - 48 Kb shared memory
 - 256 Kb register file
 - 1.3 GHz clock

nVidia Tesla P100
- 16 GB Global Memory
- 56 SMs
 - 64 cores
 - 48 Kb shared memory
 - 256 Kb register file
 - 1.3 GHz clock

Global Memory
16 GB