An Introduction to Algorithmic Prefix Complexity

Xuangui Huang

Shanghai Jiao Tong University

April 1, 2014
Outline

1 Motivation

2 Partial Recursive Prefix Functions

3 The Invariance Theorem
 - The Theorem
 - Proof Motivation
 - The Construction
 - Proof

4 Examples
We have seen the ‘Algorithmic Plain Complexity’ last week. However,

- it would be more pleasing if the complexity of xy were never less than that of x;
- it is natural to restrict effective descriptions to prefix-codes.
We have seen the ‘Algorithmic Plain Complexity’ last week. However,

- it would be more pleasing if the complexity of xy were never less than that of x;
- it is natural to restrict effective descriptions to prefix-codes.

Hence, ‘Algorithmic Prefix Complexity’!
We have seen the ‘Algorithmic Plain Complexity’ last week. However,

- it is natural to restrict effective descriptions to prefix-codes.

Hence, ‘Algorithmic Prefix Complexity’!
In plain complexity, we use ‘partial recursive function’. In prefix complexity, we use the following one:
In plain complexity, we use ‘partial recursive function’. In prefix complexity, we use the following one:

Definition (3.1.1)

A *partial recursive prefix function* \(\phi: \{0, 1\}^* \to \mathbb{N} \) is a partial recursive (p. r.) function s.t.

- if \(p \) is a proper prefix of \(q \), then at most one of \(\phi(p) \) and \(\phi(q) \) is defined.
Thus we have the following ‘prefix’ version of complexity:

Definition (‘prefix’ version of 2.1.1)

Any partial recursive prefix function ψ, together with p and y, s.t. $\psi(\langle y, p \rangle) = x$, is a description of x. The Complexity C_ψ of x conditional to y is defined by

$$C_\psi(x | y) = \min\{l(p) : \psi(\langle y, p \rangle) = x\},$$

and $C_\psi(x | y) = \infty$ if no such p exists.
The Invariance Theorem

Theorem (3.1.1)

There exists an additively optimal p. r. prefix function \(\psi_0 \) s.t.
\[
\forall \text{ p. r. prefix function } \psi, \exists \text{ constant } c_\psi, \text{ s.t.}
\]
\[
\forall x, y \in \mathcal{N}, \ C_{\psi_0}(x|y) \leq C_{\psi}(x|y) + c_\psi.
\]
Similarly as before, we need to construct a universal p.r. prefix function, or, an effective enumeration of p.r. prefix functions.
Similarly as before, we need to construct a universal p.r. prefix function, or, an effective enumeration of p.r. prefix functions.

Fix an effective enumeration of Turing Machines T_1, T_2, \ldots, we will effectively construct *prefix machines* T'_1, T'_2, \ldots, which will computes all and only the p.r. prefix functions.
Property of our construction

- For Turing Machine T, the prefix machine T' we constructed will read the input from left to right in one direction.
Property of our construction

- For Turing Machine T, the prefix machine T' we constructed will read the input from left to right in one direction.
- Besides, its input is a potentially infinite binary input sequence $b_1 b_2 \ldots$.
Construction of T' given T

The computation of T' on input $b_1b_2\ldots$ is as follow:

Step 1 Set $p \leftarrow \epsilon$.

Step 2 Dovetailing:

- Let q_j is the j-th string of $\{0, 1\}^*$
- Execute the following commands stage by stage:
 - In stage i, simulate one step of the computation of $T(pq_j)$ for all $j \leq i$
 - If in the above simulation, there exists $T(pq_j) \downarrow$, choose the first q_j as q, go to step 3

Step 3

- If $q = \epsilon$ Then output $T(p)$ and halt
- Else:
 - read $b \leftarrow$ next input bit, set $p \leftarrow pb$
 - go to step 2
Halting Inputs, or Programs

Definition

For an input sequence \(b_1b_2\ldots\), the halting input, or program, of \(T\) is its initial segment \(b_1b_2\ldots b_m\) s.t. \(T\) halts after reading \(b_m\) before reading \(b_{m+1}\).
Halting Inputs, or Programs

Definition

For an input sequence $b_1b_2\ldots$, *the halting input, or program, of* T' *is its initial segment* $b_1b_2\ldots b_m$ *s.t. T' halts after reading* b_m *before reading* b_{m+1}.

Fact

For a fixed input sequence $b_1b_2\ldots$, *the program of* T' *is unique.*
Effective Enumeration of p. r. Prefix Functions

- Hence, the programs of T_1', T_2', \ldots induces an effective enumeration of p. r. prefix functions.
Effective Enumeration of p. r. Prefix Functions

- Hence, the programs of T'_{1}, T'_{2}, ... induces an effective enumeration of p. r. prefix functions.
- More precisely, with slight modification of the construction of T', we can have machine T'' read finite input and compute exactly p. r. prefix function.
Proof

Theorem (3.1.1)

There exists an additively optimal p. r. prefix function ψ_0 s.t.
\[\forall \ p. \ r. \ prefix \ function \ \psi, \ \exists \ constant \ c_{\psi}, \ s.t. \]
\[\forall x, y \in \mathcal{N}, \ C_{\psi_0}(x|y) \leq C_{\psi}(x|y) + c_{\psi}. \]
Theorem (3.1.1)

There exists an additively optimal p. r. prefix function \(\psi_0 \) *s.t.*

\[
\forall \text{p. r. prefix function } \psi, \exists \text{ constant } c_\psi, \text{ s.t. } \\
\forall x, y \in \mathcal{N}, \ C_{\psi_0}(x|y) \leq C_\psi(x|y) + c_\psi.
\]

Proof:

Let \(\psi_0 \) be the p. r. prefix function computed by a universal prefix machine \(U \) s.t.

\[
\forall y, p \in \mathcal{N}, U(\langle y, \langle n, p \rangle \rangle) = T''_n(\langle y, p \rangle),
\]

Then \(C_{\psi_0}(x|y) \leq C_{\psi_n}(x|y) + (2l(n) + 1) \)
Complexity

Since \(\forall \) additively optimal p. r. prefix functions \(\psi, \psi' \), we have
\[
|C_\psi(x|y) - C_{\psi'}(x|y)| \leq c_{\psi,\psi'},
\]
we can fix one of them as the standard reference \(\psi_0 \).
Complexity

Since ∀ additively optimal p. r. prefix functions ψ, ψ', we have

\[|C_\psi(x|y) - C_{\psi'}(x|y)| \leq c_{\psi,\psi'}, \]

we can fix one of them as the standard reference ψ₀.

Definition

The prefix complexity of x conditional to y is

\[K(x|y) = C_{\psi_0}(x|y). \]

The (unconditional) prefix complexity of x is

\[K(x) = K(x|\epsilon). \]
Advantage of Just Decoding Prefix-codes

- Define $K(x, y) = K(\langle x, y \rangle)$
- Now we can directly concatenate two descriptions to describe $\langle x, y \rangle$.

Xuangui Huang
An Introduction to Algorithmic Prefix Complexity
Define $K(x, y) = K(\langle x, y \rangle)$

Now we can directly concatenate two descriptions to describe $\langle x, y \rangle$, therefore K is *subadditive*:

$$K(x, y) \leq K(x) + K(y) + O(1)$$
Define $K(x, y) = K(\langle x, y \rangle)$

Now we can directly concatenate two descriptions to describe $\langle x, y \rangle$, therefore K is subadditive:

$$K(x, y) \leq K(x) + K(y) + O(1)$$

Similarly, $K(xy) \leq K(x) + K(y) + O(1)$
Examples

\[\forall x, K(x) \leq C(x) + K(C(x)) + O(1) \]
\[\forall x, K(x) \leq C(x) + K(C(x)) + O(1) \]

Proof:
If \(p \) is a shortest program (on TM) for \(x \) with \(l(p) = C(x) \), and \(q \) is a shortest program (on prefix machines) for \(l(p) \) with \(l(q) = K(l(p)) \), then \(qp \) is a program for \(x \) on some prefix machine. \qed
Examples

- $\forall x, K(x) \leq C(x) + K(C(x)) + O(1)$
- $\forall x, y, C(x|y) \leq K(x|y) \leq C(x|y) + 2 \log C(x|y)$
Examples

- \(\forall x, K(x) \leq C(x) + K(C(x)) + O(1) \)
- \(\forall x, y, C(x|y) \leq K(x|y) \leq C(x|y) + 2 \log C(x|y) \)

Proof:
If \(p \) is a shortest program (on TM) for \(x \) conditional to \(y \) with \(l(p) = C(x|y) \),
then \(l(p)p \) is a program for \(p \) on some prefix machine.
Examples

- $\forall x, K(x) \leq C(x) + K(C(x)) + O(1)$
- $\forall x, y, C(x|y) \leq K(x|y) \leq C(x|y) + 2 \log C(x|y)$
- $K(x) \leq K(x|l(x)) + K(l(x)) + O(1) \leq K(x|l(x)) + \log^* l(x) + l(l(x)) + l(l(l(x)))) + \ldots + O(1)$
Thank you!