Bitbucket is a code hosting site with unlimited public and private repositories. We're also free for small teams!

Close

Information Theoretical Estimators (ITE) Toolbox

News: ITE has


ITE is capable of estimating many different variants of entropy, mutual information, divergence, association measures, cross quantities, and kernels on distributions. Thanks to its highly modular design, ITE supports additionally

  • the combinations of the estimation techniques,
  • the easy construction and embedding of novel information theoretical estimators, and
  • their immediate application in information theoretical optimization problems.

ITE is

  • written in Matlab/Octave,
  • multi-platform (tested extensively on Windows and Linux),
  • free and open source (released under the GNU GPLv3(>=) license).

ITE can estimate

  • entropy (H): Shannon entropy, Rényi entropy, Tsallis entropy (Havrda and Charvát entropy), complex entropy, Phi-entropy (f-entropy), Sharma-Mittal entropy,
  • mutual information (I): generalized variance, kernel canonical correlation analysis, kernel generalized variance, Hilbert-Schmidt independence criterion, Shannon mutual information (total correlation, multi-information), L2 mutual information, Rényi mutual information, Tsallis mutual information, copula-based kernel dependency, multivariate version of Hoeffding's Phi, Schweizer-Wolff's sigma and kappa, complex mutual information, Cauchy-Schwartz quadratic mutual information, Euclidean distance based quadratic mutual information, distance covariance, distance correlation, approximate correntropy independence measure, chi-square mutual information (Hilbert-Schmidt norm of the normalized cross-covariance operator, squared-loss mutual information, mean square contingency),
  • divergence (D): Kullback-Leibler divergence (relative entropy, I directed divergence), L2 divergence, Rényi divergence, Tsallis divergence, Hellinger distance, Bhattacharyya distance, maximum mean discrepancy (kernel distance), J-distance (symmetrised Kullback-Leibler divergence, J divergence), Cauchy-Schwartz divergence, Euclidean distance based divergence, energy distance (specially the Cramer-Von Mises distance), Jensen-Shannon divergence, Jensen-Rényi divergence, K divergence, L divergence, f-divergence (Csiszár-Morimoto divergence, Ali-Silvey distance), non-symmetric Bregman distance (Bregman divergence), Jensen-Tsallis divergence, symmetric Bregman distance, Pearson chi square divergence (chi square distance), Sharma-Mittal divergence,
  • association measures (A), including measures of concordance: multivariate extensions of Spearman's rho (Spearman's rank correlation coefficient, grade correlation coefficient), correntropy, centered correntropy, correntropy coefficient, correntropy induced metric, centered correntropy induced metric, multivariate extension of Blomqvist's beta (medial correlation coefficient), multivariate conditional version of Spearman's rho, lower/upper tail dependence via conditional Spearman's rho,
  • cross quantities (C): cross-entropy,
  • kernels on distributions (K): expected kernel (summation kernel, mean map kernel), Bhattacharyya kernel, probability product kernel, Jensen-Shannon kernel, exponentiated Jensen-Shannon kernel, exponentiated Jensen-Renyi kernel(s), Jensen-Tsallis kernel, exponentiated Jensen-Tsallis kernel(s), and
  • +some auxiliary quantities: Bhattacharyya coefficient (Hellinger affinity), alpha-divergence.

ITE offers

  • solution methods for Independent Subspace Analysis (ISA) and its extensions to different linear-, controlled-, post nonlinear-, complex valued-, partially observed models, as well as to systems with nonparametric source dynamics,
  • several consistency tests (analytical vs estimated value),
  • illustrations for information theoretical image registration, and
  • distribution regression including (i) supervised entropy learning and (ii) aerosol optical depth prediction based on satellite images.

Note:

  • the evolution of the ITE code is briefly summarized in CHANGELOG.txt.
  • if you have a H/I/D/A/C/K estimator/subtask solver [with a GPLv3(>=)-compatible license, such as GPLv3 or GPLv3(>=)] that you would like to be embedded into ITE, feel free to contact me.

Share your ITE application (reference/link): using Wiki.

ITE mailing list: You can sign up here.

Follow ITE: on Bitbucket, on Twitter.


Citing: If you use the ITE toolbox in your research, please cite .bib.

Download the latest release:

Recent activity

Zoltán Szabó

Zoltán Szabó pushed 2 commits to szzoli/ITE

81ec4e0 - Added tag release-0.57 for changeset 1ef93d3f859b
1ef93d3 - Kullback-Leibler divergence estimation based on MLE + analytical formula in the chosen exponential family, a new sampling based entropy estimator with KDE correction on the ...
Zoltán Szabó

Zoltán Szabó uploaded file ITE-0.56_documentation.pdf to ite

File has been deleted.

Zoltán Szabó

Zoltán Szabó pushed 2 commits to szzoli/ITE

89d4712 - Added tag release-0.56 for changeset f55618806a2d
f556188 - Distribution regression (supervised entropy learning, aerosol optical depth prediction based on satellite images): added. MMD distance computation based on U-statistics, expected kernel: upgraded to cover ...
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.