# Commits

committed e387320

Moving down

• Participants
• Parent commits 97c594b

# File go/1.go

`-/*`
`-If we list all the natural numbers below 10 that are multiples of 3 or 5, we get`
`-3, 5, 6 and 9. The sum of these multiples is 23.`
`-`
`-Find the sum of all the multiples of 3 or 5 below 1000.`
`-`
`-Answer: 233168`
`-*/`
`-package main`
`-`
`-import "fmt"`
`-`
`-func main() {`
`-	sum := 0`
`-	for i := 1; i < 1000; i++ {`
`-		if (i%5 == 0) || (i%3 == 0) {`
`-			sum += i`
`-		}`
`-	}`
`-`
`-	fmt.Println(sum)`
`-}`

# File go/10.go

`-/*`
`-The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.`
`-`
`-Find the sum of all the primes below two million.`
`-`
`-Answer: 142913828922`
`-*/`
`-`
`-package main`
`-`
`-import (`
`-	"big"`
`-	"fmt"`
`-)`
`-`
`-func main() {`
`-	sum := int64(0)`
`-	for i := int64(0); i < 2000000; i++ {`
`-		if big.ProbablyPrime(big.NewInt(i), 10) {`
`-			sum += i`
`-		}`
`-	}`
`-	fmt.Println(sum)`
`-}`

# File go/11.go

`-/*`
`-In the 20×20 grid below, four numbers along a diagonal line have been marked in red.`
`-`
`-08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08`
`-49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00`
`-81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65`
`-52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91`
`-22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80`
`-24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50`
`-32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70`
`-67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21`
`-24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72`
`-21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95`
`-78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92`
`-16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57`
`-86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58`
`-19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40`
`-04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66`
`-88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69`
`-04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36`
`-20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16`
`-20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54`
`-01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48`
`-`
`-The product of these numbers is 26 × 63 × 78 × 14 = 1788696.`
`-`
`-What is the greatest product of four adjacent numbers in any direction (up,`
`-down, left, right, or diagonally) in the 20×20 grid?`
`-`
`-Answer: 70600674`
`-*/`
`-`
`-package main`
`-`
`-import "fmt"`
`-`
`-var nums = [][]int{`
`-	{8, 2, 22, 97, 38, 15, 00, 40, 00, 75, 04, 05, 07, 78, 52, 12, 50, 77, 91, 8},`
`-	{49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 4, 56, 62, 0},`
`-	{81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 3, 49, 13, 36, 65},`
`-	{52, 70, 95, 23, 4, 60, 11, 42, 69, 24, 68, 56, 01, 32, 56, 71, 37, 02, 36, 91},`
`-	{22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80},`
`-	{24, 47, 32, 60, 99, 3, 45, 02, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50},`
`-	{32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70},`
`-	{67, 26, 20, 68, 2, 62, 12, 20, 95, 63, 94, 39, 63, 8, 40, 91, 66, 49, 94, 21},`
`-	{24, 55, 58, 5, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72},`
`-	{21, 36, 23, 9, 75, 0, 76, 44, 20, 45, 35, 14, 00, 61, 33, 97, 34, 31, 33, 95},`
`-	{78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 3, 80, 04, 62, 16, 14, 9, 53, 56, 92},`
`-	{16, 39, 5, 42, 96, 35, 31, 47, 55, 58, 88, 24, 00, 17, 54, 24, 36, 29, 85, 57},`
`-	{86, 56, 0, 48, 35, 71, 89, 07, 05, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58},`
`-	{19, 80, 81, 68, 5, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 04, 89, 55, 40},`
`-	{4, 52, 8, 83, 97, 35, 99, 16, 07, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66},`
`-	{88, 36, 68, 87, 57, 62, 20, 72, 3, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69},`
`-	{4, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 8, 46, 29, 32, 40, 62, 76, 36},`
`-	{20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 4, 36, 16},`
`-	{20, 73, 35, 29, 78, 31, 90, 1, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 05, 54},`
`-	{1, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 1, 89, 19, 67, 48},`
`-}`
`-`
`-func main() {`
`-	max := 0`
`-	// horizontal`
`-	for row := 0; row < 20; row++ {`
`-		for col := 0; col <= 16; col++ {`
`-			p := nums[row][col] * nums[row][col+1] * nums[row][col+2] *`
`-				nums[row][col+3]`
`-			if p > max {`
`-				max = p`
`-			}`
`-		}`
`-	}`
`-	// vertical`
`-	for row := 0; row < 16; row++ {`
`-		for col := 0; col < 20; col++ {`
`-			p := nums[row][col] * nums[row+1][col] * nums[row+2][col] *`
`-				nums[row+3][col]`
`-			if p > max {`
`-				max = p`
`-			}`
`-		}`
`-	}`
`-	// right diagonal`
`-	for row := 0; row < 16; row++ {`
`-		for col := 0; col < 16; col++ {`
`-			p := nums[row][col] * nums[row+1][col+1] * nums[row+2][col+2] *`
`-				nums[row+3][col+3]`
`-			if p > max {`
`-				max = p`
`-			}`
`-		}`
`-	}`
`-	// left diagonal`
`-	for row := 0; row < 16; row++ {`
`-		for col := 3; col < 20; col++ {`
`-			p := nums[row][col] * nums[row+1][col-1] * nums[row+2][col-2] *`
`-				nums[row+3][col-3]`
`-			if p > max {`
`-				max = p`
`-			}`
`-		}`
`-	}`
`-`
`-	fmt.Println(max)`
`-}`

# File go/12.go

`-/*`
`-The sequence of triangle numbers is generated by adding the natural numbers. So`
`-the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten`
`-terms would be:`
`-`
`-1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...`
`-`
`-Let us list the factors of the first seven triangle numbers:`
`-`
`-     1: 1`
`-     3: 1,3`
`-     6: 1,2,3,6`
`-    10: 1,2,5,10`
`-    15: 1,3,5,15`
`-    21: 1,3,7,21`
`-    28: 1,2,4,7,14,28`
`-`
`-We can see that 28 is the first triangle number to have over five divisors.`
`-`
`-What is the value of the first triangle number to have over five hundred`
`-divisors?`
`-`
`-Answer: 76576500`
`-*/`
`-`
`-package main`
`-`
`-import "fmt"`
`-`
`-func triangles() chan uint {`
`-	out := make(chan uint)`
`-	go func() {`
`-		t, i := uint(0), uint(1)`
`-		for {`
`-			t += i`
`-			out <- t`
`-			i++`
`-		}`
`-	}()`
`-`
`-	return out`
`-}`
`-`
`-func numDivisors(n uint) uint {`
`-	d := uint(2) // 1 and the number itself`
`-	for i := uint(2); i <= n/2+1; i++ {`
`-		if n%i == 0 {`
`-			d++`
`-		}`
`-	}`
`-`
`-	return d`
`-}`
`-`
`-func worker(in chan uint, out chan uint) {`
`-	for {`
`-		t := <-in`
`-		if numDivisors(t) > 500 {`
`-			out <- t`
`-		}`
`-	}`
`-}`
`-`
`-const (`
`-	NUM_WORKERS = 1000`
`-)`
`-`
`-func main() {`
`-	out := make(chan uint)`
`-	in := triangles()`
`-	for i := 0; i < NUM_WORKERS; i++ {`
`-		go worker(in, out)`
`-	}`
`-`
`-	t := <-out`
`-	fmt.Println(t)`
`-}`

# File go/13-digits.txt

`-37107287533902102798797998220837590246510135740250`
`-46376937677490009712648124896970078050417018260538`
`-74324986199524741059474233309513058123726617309629`
`-91942213363574161572522430563301811072406154908250`
`-23067588207539346171171980310421047513778063246676`
`-89261670696623633820136378418383684178734361726757`
`-28112879812849979408065481931592621691275889832738`
`-44274228917432520321923589422876796487670272189318`
`-47451445736001306439091167216856844588711603153276`
`-70386486105843025439939619828917593665686757934951`
`-62176457141856560629502157223196586755079324193331`
`-64906352462741904929101432445813822663347944758178`
`-92575867718337217661963751590579239728245598838407`
`-58203565325359399008402633568948830189458628227828`
`-80181199384826282014278194139940567587151170094390`
`-35398664372827112653829987240784473053190104293586`
`-86515506006295864861532075273371959191420517255829`
`-71693888707715466499115593487603532921714970056938`
`-54370070576826684624621495650076471787294438377604`
`-53282654108756828443191190634694037855217779295145`
`-36123272525000296071075082563815656710885258350721`
`-45876576172410976447339110607218265236877223636045`
`-17423706905851860660448207621209813287860733969412`
`-81142660418086830619328460811191061556940512689692`
`-51934325451728388641918047049293215058642563049483`
`-62467221648435076201727918039944693004732956340691`
`-15732444386908125794514089057706229429197107928209`
`-55037687525678773091862540744969844508330393682126`
`-18336384825330154686196124348767681297534375946515`
`-80386287592878490201521685554828717201219257766954`
`-78182833757993103614740356856449095527097864797581`
`-16726320100436897842553539920931837441497806860984`
`-48403098129077791799088218795327364475675590848030`
`-87086987551392711854517078544161852424320693150332`
`-59959406895756536782107074926966537676326235447210`
`-69793950679652694742597709739166693763042633987085`
`-41052684708299085211399427365734116182760315001271`
`-65378607361501080857009149939512557028198746004375`
`-35829035317434717326932123578154982629742552737307`
`-94953759765105305946966067683156574377167401875275`
`-88902802571733229619176668713819931811048770190271`
`-25267680276078003013678680992525463401061632866526`
`-36270218540497705585629946580636237993140746255962`
`-24074486908231174977792365466257246923322810917141`
`-91430288197103288597806669760892938638285025333403`
`-34413065578016127815921815005561868836468420090470`
`-23053081172816430487623791969842487255036638784583`
`-11487696932154902810424020138335124462181441773470`
`-63783299490636259666498587618221225225512486764533`
`-67720186971698544312419572409913959008952310058822`
`-95548255300263520781532296796249481641953868218774`
`-76085327132285723110424803456124867697064507995236`
`-37774242535411291684276865538926205024910326572967`
`-23701913275725675285653248258265463092207058596522`
`-29798860272258331913126375147341994889534765745501`
`-18495701454879288984856827726077713721403798879715`
`-38298203783031473527721580348144513491373226651381`
`-34829543829199918180278916522431027392251122869539`
`-40957953066405232632538044100059654939159879593635`
`-29746152185502371307642255121183693803580388584903`
`-41698116222072977186158236678424689157993532961922`
`-62467957194401269043877107275048102390895523597457`
`-23189706772547915061505504953922979530901129967519`
`-86188088225875314529584099251203829009407770775672`
`-11306739708304724483816533873502340845647058077308`
`-82959174767140363198008187129011875491310547126581`
`-97623331044818386269515456334926366572897563400500`
`-42846280183517070527831839425882145521227251250327`
`-55121603546981200581762165212827652751691296897789`
`-32238195734329339946437501907836945765883352399886`
`-75506164965184775180738168837861091527357929701337`
`-62177842752192623401942399639168044983993173312731`
`-32924185707147349566916674687634660915035914677504`
`-99518671430235219628894890102423325116913619626622`
`-73267460800591547471830798392868535206946944540724`
`-76841822524674417161514036427982273348055556214818`
`-97142617910342598647204516893989422179826088076852`
`-87783646182799346313767754307809363333018982642090`
`-10848802521674670883215120185883543223812876952786`
`-71329612474782464538636993009049310363619763878039`
`-62184073572399794223406235393808339651327408011116`
`-66627891981488087797941876876144230030984490851411`
`-60661826293682836764744779239180335110989069790714`
`-85786944089552990653640447425576083659976645795096`
`-66024396409905389607120198219976047599490197230297`
`-64913982680032973156037120041377903785566085089252`
`-16730939319872750275468906903707539413042652315011`
`-94809377245048795150954100921645863754710598436791`
`-78639167021187492431995700641917969777599028300699`
`-15368713711936614952811305876380278410754449733078`
`-40789923115535562561142322423255033685442488917353`
`-44889911501440648020369068063960672322193204149535`
`-41503128880339536053299340368006977710650566631954`
`-81234880673210146739058568557934581403627822703280`
`-82616570773948327592232845941706525094512325230608`
`-22918802058777319719839450180888072429661980811197`
`-77158542502016545090413245809786882778948721859617`
`-72107838435069186155435662884062257473692284509516`
`-20849603980134001723930671666823555245252804609722`
`-53503534226472524250874054075591789781264330331690`

# File go/13.go

`-/*`
`-Work out the first ten digits of the sum of the following one-hundred 50-digit numbers.`
`-`
`-[13-digits.txt]`
`-`
`-Answer: 5537376230`
`-*/`
`-`
`-package main`
`-`
`-import (`
`-	"big"`
`-	"bufio"`
`-	"fmt"`
`-	"os"`
`-)`
`-`
`-func numbers(filename string) chan *big.Int {`
`-	out := make(chan *big.Int)`
`-	file, err := os.Open(filename)`
`-	if err != nil {`
`-		panic(fmt.Sprintf("error: can't open %s - %s", filename, err))`
`-	}`
`-	reader := bufio.NewReader(file)`
`-	go func() {`
`-		for {`
`-			line, _, err := reader.ReadLine()`
`-			if err == os.EOF {`
`-				close(out)`
`-				break`
`-			} else if err != nil {`
`-				panic(fmt.Sprintf("error: %s", err))`
`-			}`
`-`
`-			i := big.NewInt(0)`
`-			i.SetString(string(line), 10)`
`-`
`-			out <- i`
`-		}`
`-	}()`
`-`
`-	return out`
`-}`
`-`
`-func main() {`
`-	sum := big.NewInt(0)`
`-	for i := range numbers("13-digits.txt") {`
`-		sum.Add(sum, i)`
`-	}`
`-`
`-	fmt.Println(sum.String()[:10])`
`-}`

# File go/14.go

`-/*`
`-The following iterative sequence is defined for the set of positive integers:`
`-`
`-n → n/2 (n is even)`
`-n → 3n + 1 (n is odd)`
`-`
`-Using the rule above and starting with 13, we generate the following sequence:`
`-13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1`
`-`
`-It can be seen that this sequence (starting at 13 and finishing at 1) contains`
`-10 terms. Although it has not been proved yet (Collatz Problem), it is thought`
`-that all starting numbers finish at 1.`
`-`
`-Which starting number, under one million, produces the longest chain?`
`-`
`-NOTE: Once the chain starts the terms are allowed to go above one million`
`-*/`
`-`
`-package main`
`-`
`-import (`
`-	"big"`
`-	"fmt"`
`-)`
`-`
`-var one *big.Int = big.NewInt(1)`
`-var two *big.Int = big.NewInt(2)`
`-var three *big.Int = big.NewInt(3)`
`-`
`-func collatz(n int) int {`
`-	// use big.Int since intermediate results overflow ints`
`-	value := big.NewInt(int64(n))`
`-	for length := 1; ; length++ {`
`-		if value.Cmp(one) == 0 {`
`-			return length`
`-		}`
`-`
`-		if value.Bit(0) == 0 {`
`-			value.Div(value, two)`
`-		} else {`
`-			value.Mul(value, three)`
`-			value.Add(value, one)`
`-		}`
`-`
`-	}`
`-	// make the compiler happy`
`-	return -1`
`-}`
`-`
`-func main() {`
`-	n, value := 1, 1`
`-`
`-	for i := 2; i < 1000000; i++ {`
`-		c := collatz(i)`
`-		if c > value {`
`-			n, value = i, c`
`-		}`
`-	}`
`-`
`-	fmt.Println(n)`
`-}`

# File go/14.py

`-#!/usr/bin/env python`
`-`
`-_collatz = {1:1}`
`-def collatz(n):`
`-    value = _collatz.get(n)`
`-    if value:`
`-        return value`
`-`
`-    if (n % 2) == 0:`
`-        _collatz[n] = value = 1 + collatz(n/2)`
`-    else:`
`-        _collatz[n] = value = 1 + collatz(3*n+1)`
`-`
`-    return value`
`-`
`-def main():`
`-    n, value = 1, 1`
`-    for i in xrange(2, 1000001):`
`-        c = collatz(i)`
`-        if c > value:`
`-            n, value = i, c`
`-`
`-    print(n)`
`-`
`-if __name__ == "__main__":`
`-    main()`

# File go/15.go

`-/*`
`-Starting in the top left corner of a 2×2 grid, there are 6 routes (without`
`-backtracking) to the bottom right corner.`
`-`
`-How many routes are there through a 20×20 grid?`
`-`
`-Answer: 137846528820`
`-*/`
`-`
`-package main`
`-`
`-import "fmt"`
`-`
`-const (`
`-	MAX_X = 20`
`-	MAX_Y = 20`
`-)`
`-`
`-type Point struct {`
`-	X, Y int`
`-}`
`-`
`-func (p *Point) Hash() string {`
`-	return fmt.Sprintf("%d, %d", p.X, p.Y)`
`-}`
`-`
`-var _cache map[string]uint64`
`-`
`-func numPaths(p *Point) uint64 {`
`-	value, ok := _cache[p.Hash()]`
`-	if ok {`
`-		return value`
`-	}`
`-	if p.X == MAX_X || p.Y == MAX_Y {`
`-		return 1`
`-	}`
`-`
`-	np := numPaths(&Point{p.X + 1, p.Y}) + numPaths(&Point{p.X, p.Y + 1})`
`-	_cache[p.Hash()] = np`
`-`
`-	return np`
`-}`
`-`
`-func main() {`
`-	_cache = make(map[string]uint64)`
`-	fmt.Println(numPaths(&Point{0, 0}))`
`-}`

# File go/16.go

`-/*`
`-215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.`
`-`
`-What is the sum of the digits of the number 21000?`
`-`
`-Answer: 1366`
`-*/`
`-`
`-package main`
`-`
`-import (`
`-	"big"`
`-	"fmt"`
`-)`
`-`
`-func sumDigits(s string) int {`
`-	sum := 0`
`-	for _, c := range s {`
`-		sum += c - '0'`
`-	}`
`-`
`-	return sum`
`-}`
`-`
`-func main() {`
`-	i := big.NewInt(2)`
`-	i.Exp(big.NewInt(2), big.NewInt(1000), nil)`
`-	fmt.Println(sumDigits(i.String()))`
`-}`

# File go/17.go

`-/*`
`-If the numbers 1 to 5 are written out in words: one, two, three, four, five,`
`-then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total.`
`-`
`-If all the numbers from 1 to 1000 (one thousand) inclusive were written out in`
`-words, how many letters would be used?`
`-`
`-NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and`
`-forty-two) contains 23 letters and 115 (one hundred and fifteen) contains 20`
`-letters. The use of "and" when writing out numbers is in compliance with British`
`-usage.`
`-`
`-Answer: 21124`
`-*/`
`-`
`-package main`
`-`
`-import "fmt"`
`-`
`-var numbers = map[int]string{`
`-	1:  "one",`
`-	2:  "two",`
`-	3:  "three",`
`-	4:  "four",`
`-	5:  "five",`
`-	6:  "six",`
`-	7:  "seven",`
`-	8:  "eight",`
`-	9:  "nine",`
`-	10: "ten",`
`-	11: "eleven",`
`-	12: "twleve",`
`-	13: "thirteen",`
`-	14: "fourteen",`
`-	15: "fifteen",`
`-	16: "sixteen",`
`-	17: "seventeen",`
`-	18: "eighteen",`
`-	19: "nineteen",`
`-	20: "twenty",`
`-	30: "thirty",`
`-	40: "forty",`
`-	50: "fifty",`
`-	60: "sixty",`
`-	70: "seventy",`
`-	80: "eighty",`
`-	90: "ninety",`
`-}`
`-`
`-func english(n int) string {`
`-	if n >= 100 {`
`-		hundreds := numbers[n/100] + "hundred"`
`-		tens := english(n - n/100*100)`
`-		if len(tens) > 0 {`
`-			return hundreds + "and" + tens`
`-		} else {`
`-			return hundreds`
`-		}`
`-	}`
`-	if value, ok := numbers[n]; ok {`
`-		return value`
`-	}`
`-`
`-	if n >= 20 {`
`-		return numbers[n/10*10] + numbers[n-n/10*10]`
`-	}`
`-`
`-	return ""`
`-}`
`-`
`-func main() {`
`-	s := "onethousand"`
`-	for n := 1; n < 1000; n++ {`
`-		s += english(n)`
`-	}`
`-	fmt.Println(len(s))`
`-}`

# File go/18.go

`-package main`
`-`
`-import "fmt"`
`-`
`-var nums = [][]int{`
`-	{75},`
`-	{95, 64},`
`-	{17, 47, 82},`
`-	{18, 35, 87, 10},`
`-	{20, 4, 82, 47, 65},`
`-	{19, 1, 23, 75, 3, 34},`
`-	{88, 2, 77, 73, 7, 63, 67},`
`-	{99, 65, 4, 28, 6, 16, 70, 92},`
`-	{41, 41, 26, 56, 83, 40, 80, 70, 33},`
`-	{41, 48, 72, 33, 47, 32, 37, 16, 94, 29},`
`-	{53, 71, 44, 65, 25, 43, 91, 52, 97, 51, 14},`
`-	{70, 11, 33, 28, 77, 73, 17, 78, 39, 68, 17, 57},`
`-	{91, 71, 52, 38, 17, 14, 91, 43, 58, 50, 27, 29, 48},`
`-	{63, 66, 4, 68, 89, 53, 67, 30, 73, 16, 69, 87, 40, 31},`
`-	{4, 62, 98, 27, 23, 9, 70, 98, 73, 93, 38, 53, 60, 4, 23},`
`-}`
`-`
`-func max(a, b int) int {`
`-	if a > b {`
`-		return a`
`-	}`
`-	return b`
`-}`
`-`
`-func maxPath(row, col int) int {`
`-	value := nums[row][col]`
`-	if row == len(nums)-1 {`
`-		return value`
`-	}`
`-	return value + max(maxPath(row+1, col), maxPath(row+1, col+1))`
`-}`
`-`
`-func main() {`
`-	fmt.Println(maxPath(0, 0))`
`-}`

# File go/19.go

`-/*`
`-You are given the following information, but you may prefer to do some research`
`-for yourself.`
`-`
`-    1 Jan 1900 was a Monday.`
`-    Thirty days has September,`
`-    April, June and November.`
`-    All the rest have thirty-one,`
`-    Saving February alone,`
`-    Which has twenty-eight, rain or shine.`
`-    And on leap years, twenty-nine.`
`-	A leap year occurs on any year evenly divisible by 4, but not on a century`
`-		unless it is divisible by 400.`
`-`
`-How many Sundays fell on the first of the month during the twentieth century (1`
`-Jan 1901 to 31 Dec 2000)?`
`-`
`-Answer: 171`
`-*/`
`-`
`-package main`
`-`
`-import "fmt"`
`-`
`-func isLeap(year int) bool {`
`-	if year%100 == 0 {`
`-		return year%400 == 0`
`-	}`
`-`
`-	return year%4 == 0`
`-}`
`-`
`-func numDays(month, year int) int {`
`-	switch month {`
`-	case 2:`
`-		if isLeap(year) {`
`-			return 29`
`-		}`
`-		return 28`
`-	case 4, 6, 9, 11:`
`-		return 30`
`-	}`
`-	return 31`
`-}`
`-`
`-func main() {`
`-	weekday := 1 // Monday`
`-	day, month, year := 1, 1, 1900`
`-	count := 0`
`-`
`-	for {`
`-		if year > 2000 {`
`-			break`
`-		}`
`-`
`-		if year > 1900 {`
`-			if weekday == 0 && day == 1 {`
`-				count += 1`
`-			}`
`-		}`
`-`
`-		day += 1`
`-		weekday = (weekday + 1) % 7`
`-		if day > numDays(month, year) {`
`-			day = 1`
`-			month += 1`
`-			if month > 12 {`
`-				month = 1`
`-				year += 1`
`-			}`
`-		}`
`-	}`
`-`
`-	fmt.Println(count)`
`-}`

# File go/2.go

`-/*`
`-Each new term in the Fibonacci sequence is generated by adding the previous two`
`-terms. By starting with 1 and 2, the first 10 terms will be:`
`-`
`-1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...`
`-`
`-By considering the terms in the Fibonacci sequence whose values do not exceed`
`-four million, find the sum of the even-valued terms.`
`-`
`-Answer: 4613732`
`-*/`
`-package main`
`-`
`-import "fmt"`
`-`
`-func fibs() chan int {`
`-	results := make(chan int)`
`-	go func() {`
`-		var a, b = 1, 1`
`-		for {`
`-			results <- a`
`-			a, b = b, a+b`
`-		}`
`-	}()`
`-`
`-	return results`
`-}`
`-`
`-func main() {`
`-	sum := 0`
`-	for i := range fibs() {`
`-		if i >= 4000000 {`
`-			break`
`-		}`
`-		if i%2 == 0 {`
`-			sum += i`
`-		}`
`-	}`
`-`
`-	fmt.Println(sum)`
`-}`

# File go/20.go

`-/*j`
`-n! means n × (n − 1) × ... × 3 × 2 × 1`
`-`
`-For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800,`
`-and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27.`
`-`
`-Find the sum of the digits in the number 100!`
`-`
`-Answer: 648`
`-*/`
`-`
`-package main`
`-`
`-import (`
`-	"big"`
`-	"fmt"`
`-)`
`-`
`-// taken from 16`
`-func sumDigits(s string) int {`
`-	sum := 0`
`-	for _, c := range s {`
`-		sum += c - '0'`
`-	}`
`-`
`-	return sum`
`-}`
`-`
`-func main() {`
`-	fact := big.NewInt(1)`
`-	fact.MulRange(1, 100)`
`-`
`-	fmt.Println(sumDigits(fact.String()))`
`-}`

# File go/21.go

`-/*`
`-Let d(n) be defined as the sum of proper divisors of n (numbers less than n`
`-which divide evenly into n).  If d(a) = b and d(b) = a, where a ≠ b, then a and`
`-b are an amicable pair and each of a and b are called amicable numbers.`
`-`
`-For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55`
`-and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and`
`-142; so d(284) = 220.`
`-`
`-Evaluate the sum of all the amicable numbers under 10000.`
`-`
`-Answer: 31626`
`-*/`
`-package main`
`-`
`-import "fmt"`
`-`
`-func sumFactors(n int) int {`
`-	max := n/2 + 1`
`-	count := 0`
`-	for i := 1; i <= max; i++ {`
`-		if n%i == 0 {`
`-			count += i`
`-		}`
`-	}`
`-`
`-	return count`
`-}`
`-`
`-func main() {`
`-	seen := map[int]bool{}`
`-	for i := 1; i < 10000; i++ {`
`-		sf := sumFactors(i)`
`-		if sf != i && sumFactors(sf) == i {`
`-			seen[i] = true`
`-		}`
`-	}`
`-`
`-	sum := 0`
`-	for a := range seen {`
`-		sum += a`
`-	}`
`-`
`-	fmt.Println(sum)`
`-}`

# File go/22.go

`-/*`
`-Using names.txt (right click and 'Save Link/Target As...'), a 46K text file`
`-containing over five-thousand first names, begin by sorting it into alphabetical`
`-order. Then working out the alphabetical value for each name, multiply this`
`-value by its alphabetical position in the list to obtain a name score.`
`-`
`-For example, when the list is sorted into alphabetical order, COLIN, which is`
`-worth 3 + 15 + 12 + 9 + 14 = 53, is the 938th name in the list. So, COLIN would`
`-obtain a score of 938 × 53 = 49714.`
`-`
`-What is the total of all the name scores in the file?`
`-`
`-Answer: 871198282`
`-*/`
`-`
`-package main`
`-`
`-import (`
`-	"io/ioutil"`
`-	"regexp"`
`-	"sort"`
`-)`
`-`
`-func score(name string, position int) int {`
`-	score := 0`
`-	for _, c := range name {`
`-		score += c - 'A' + 1`
`-	}`
`-`
`-	return position * score`
`-}`
`-`
`-func readNamesSorted() []string {`
`-	data, _ := ioutil.ReadFile("names.txt")`
`-	re := regexp.MustCompile("[A-Z]+")`
`-	names := re.FindAll(data, -1)`
`-`
`-	// FIXME: There's probably a better way`
`-	strs := make([]string, len(names))`
`-	for i, name := range names {`
`-		strs[i] = string(name)`
`-	}`
`-	sort.Strings(strs)`
`-`
`-	return strs`
`-}`
`-`
`-func main() {`
`-	sum := 0`
`-	for i, name := range readNamesSorted() {`
`-		sum += score(name, i+1)`
`-	}`
`-	println(sum)`
`-}`

# File go/23.go

`-/*`
`-A perfect number is a number for which the sum of its proper divisors is exactly`
`-equal to the number. For example, the sum of the proper divisors of 28 would be`
`-1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number.`
`-`
`-A number n is called deficient if the sum of its proper divisors is less than n`
`-and it is called abundant if this sum exceeds n.`
`-`
`-As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest`
`-number that can be written as the sum of two abundant numbers is 24. By`
`-mathematical analysis, it can be shown that all integers greater than 28123 can`
`-be written as the sum of two abundant numbers. However, this upper limit cannot`
`-be reduced any further by analysis even though it is known that the greatest`
`-number that cannot be expressed as the sum of two abundant numbers is less than`
`-this limit.`
`-`
`-Find the sum of all the positive integers which cannot be written as the sum of`
`-two abundant numbers.`
`-`
`-Answer: 4179871`
`-*/`
`-package main`
`-`
`-func min(x, y int) int {`
`-	if x > y {`
`-		return x`
`-	}`
`-	return y`
`-}`
`-`
`-func sumDivisors(n int) int {`
`-	sum := 0`
`-	for i := 1; i < min(n/2+1, n); i++ {`
`-		if n%i == 0 {`
`-			sum += i`
`-		}`
`-	}`
`-`
`-	return sum`
`-}`
`-`
`-var _cache = map[int]bool{}`
`-`
`-func isAbudant(n int) bool {`
`-	if value, ok := _cache[n]; ok {`
`-		return value`
`-	}`
`-`
`-	value := sumDivisors(n) > n`
`-	_cache[n] = value`
`-	return value`
`-}`
`-`
`-func isSumTwoAbudant(n int) bool {`
`-	for i := 1; i < n/2+1; i++ {`
`-		if isAbudant(i) && isAbudant(n-i) {`
`-			return true`
`-		}`
`-	}`
`-`
`-	return false`
`-}`
`-`
`-func main() {`
`-	sum := 0`
`-	for i := 1; i <= 28123; i++ {`
`-		if !isSumTwoAbudant(i) {`
`-			sum += i`
`-		}`
`-	}`
`-`
`-	println(sum)`
`-}`

# File go/24.go

`-/*`
`-A permutation is an ordered arrangement of objects. For example, 3124 is one`
`-possible permutation of the digits 1, 2, 3 and 4. If all of the permutations are`
`-listed numerically or alphabetically, we call it lexicographic order. The`
`-lexicographic permutations of 0, 1 and 2 are:`
`-`
`-012   021   102   120   201   210`
`-`
`-What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5,`
`-6, 7, 8 and 9?`
`-*/`
`-package main`
`-`
`-import (`
`-	"fmt"`
`-	"sort"`
`-)`
`-`
`-type Reversed []int`
`-`
`-func (r Reversed) Len() int {`
`-	return len(r)`
`-}`
`-`
`-func (r Reversed) Less(i, j int) bool {`
`-	return r[i] > r[j]`
`-}`
`-`
`-func (r Reversed) Swap(i, j int) {`
`-	r[i], r[j] = r[j], r[i]`
`-}`
`-`
`-func isLast(items []int) bool {`
`-	return sort.IsSorted(Reversed(items))`
`-}`
`-`
`-func lexicalPermutations(items []int) chan []int {`
`-	out := make(chan []int)`
`-	sort.Ints(items)`
`-	go func() {`
`-		for {`
`-			out <- items`
`-			if isLast(items) {`
`-				close(out)`
`-				return`
`-			}`
`-		}`
`-	}()`
`-`
`-	return out`
`-}`
`-`
`-var items = []int{0, 1, 2}`
`-`
`-func main() {`
`-	var i = []int{3, 1, 2}`
`-	fmt.Printf("%v\n", isLast(i))`
`-	sort.Sort(Reversed(i))`
`-	fmt.Printf("%v\n", i)`
`-	fmt.Printf("%v\n", isLast(i))`
`-}`

# File go/25.go

`-/*`
`-The Fibonacci sequence is defined by the recurrence relation:`
`-`
`-    Fn = Fn−1 + Fn−2, where F1 = 1 and F2 = 1.`
`-`
`-Hence the first 12 terms will be:`
`-`
`-    F1 = 1`
`-    F2 = 1`
`-    F3 = 2`
`-    F4 = 3`
`-    F5 = 5`
`-    F6 = 8`
`-    F7 = 13`
`-    F8 = 21`
`-    F9 = 34`
`-    F10 = 55`
`-    F11 = 89`
`-    F12 = 144`
`-`
`-The 12th term, F12, is the first term to contain three digits.`
`-`
`-What is the first term in the Fibonacci sequence to contain 1000 digits?`
`-`
`-Answer: 4782`
`-*/`
`-package main`
`-`
`-import (`
`-	"big"`
`-	"fmt"`
`-)`
`-`
`-func fibs() chan *big.Int {`
`-	a, b := big.NewInt(1), big.NewInt(1)`
`-	out := make(chan *big.Int)`
`-	go func() {`
`-		for {`
`-			f := big.NewInt(0)`
`-			f.Add(f, a)`
`-			out <- f`
`-			a, b = b, a.Add(a, b)`
`-		}`
`-	}()`
`-`
`-	return out`
`-}`
`-`
`-func main() {`
`-	i := 0`
`-	for f := range fibs() {`
`-		i++`
`-		if len(f.String()) >= 1000 {`
`-			break`
`-		}`
`-	}`
`-	fmt.Println(i)`
`-}`

# File go/27.go

`-/*`
`-Euler published the remarkable quadratic formula:`
`-`
`-n² + n + 41`
`-`
`-It turns out that the formula will produce 40 primes for the consecutive values`
`-n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible`
`-by 41, and certainly when n = 41, 41² + 41 + 41 is clearly divisible by 41.`
`-`
`-Using computers, the incredible formula  n²  79n + 1601 was discovered, which`
`-produces 80 primes for the consecutive values n = 0 to 79. The product of the`
`-coefficients, 79 and 1601, is 126479.`
`-`
`-Considering quadratics of the form:`
`-`
`-	n² + an + b, where |a|  1000 and |b|  1000`
`-`
`-where |n| is the modulus/absolute value of n`
`-e.g. |11| = 11 and |4| = 4`
`-`
`-Find the product of the coefficients, a and b, for the quadratic expression`
`-that produces the maximum number of primes for consecutive values of n,`
`-starting with n = 0.`
`-`
`-Answer: -59231`
`-*/`
`-package main`
`-`
`-import (`
`-	"fmt"`
`-	"./primes"`
`-)`
`-`
`-func main() {`
`-	best_a, best_b, best_n := 0, 0, 0`
`-	for a := -999; a < 1000; a++ {`
`-		for b := -999; b < 1000; b++ {`
`-			n := 0`
`-			for {`
`-				v := n*n + a*n + b`
`-				if v < 0 {`
`-					break`
`-				}`
`-				if !primes.IsPrime(uint64(v)) {`
`-					break`
`-				}`
`-				n++`
`-			}`
`-`
`-			if n > best_n {`
`-				best_a, best_b, best_n = a, b, n`
`-			}`
`-		}`
`-	}`
`-`
`-	fmt.Println(best_a * best_b)`
`-}`

# File go/3.go

`-/*`
`-The prime factors of 13195 are 5, 7, 13 and 29.`
`-`
`-What is the largest prime factor of the number 600851475143 ?`
`-`
`-Answer: 6857`
`-*/`
`-package main`
`-`
`-import (`
`-	"big"`
`-	"fmt"`
`-	"math"`
`-)`
`-`
`-const (`
`-	n = 600851475143`
`-)`
`-`
`-func main() {`
`-	for start := int64(math.Sqrt(n)); start > 0; start-- {`
`-		if !big.ProbablyPrime(big.NewInt(start), 10) {`
`-			continue`
`-		}`
`-		if n%start == 0 {`
`-			fmt.Println(start)`
`-			break`
`-		}`
`-	}`
`-}`

# File go/4.go

`-/*`
`-A palindromic number reads the same both ways. The largest palindrome made from`
`-the product of two 2-digit numbers is 9009 = 91 × 99.`
`-`
`-Find the largest palindrome made from the product of two 3-digit numbers.`
`-`
`-Answer: 906609`
`-*/`
`-package main`
`-`
`-import "fmt"`
`-`
`-func isPalindrom(n int) bool {`
`-	str := fmt.Sprintf("%d", n)`
`-	size := len(str)`
`-	for i := 0; i < size/2; i++ {`
`-		if str[i] != str[size-i-1] {`
`-			return false`
`-		}`
`-	}`
`-	return true`
`-}`
`-`
`-func main() {`
`-	max := 0`
`-	for i := 1; i < 1000; i++ {`
`-		for j := 1; j < 1000; j++ {`
`-			n := i * j`
`-			if isPalindrom(n) && n > max {`
`-				max = n`
`-			}`
`-		}`
`-	}`
`-`
`-	fmt.Println(max)`
`-}`

# File go/42.go

`-/*`
`-The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangle numbers are:`
`-`
`-1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...`
`-`
`-By converting each letter in a word to a number corresponding to its`
`-alphabetical position and adding these values we form a word value. For example,`
`-the word value for SKY is 19 + 11 + 25 = 55 = t10. If the word value is a`
`-triangle number then we shall call the word a triangle word.`
`-`
`-Using words.txt (right click and 'Save Link/Target As...'), a 16K text file`
`-containing nearly two-thousand common English words, how many are triangle`
`-words?`
`-`
`-Answer: 162`
`-*/`
`-package main`
`-`
`-import (`
`-	"fmt"`
`-	"io/ioutil"`
`-	"regexp"`
`-)`
`-`
`-func triangle(n int) int {`
`-	f := float64(n)`
`-	return int((f / 2) * (f + 1))`
`-}`
`-`
`-func wordToNumber(word []byte) int {`
`-	num := 0`
`-	offset := byte('A' - 1)`
`-	for _, c := range word {`
`-		num += int(c - offset)`
`-	}`
`-	return num`
`-}`
`-`
`-func triangles(max int) map[int]bool {`
`-	ts := make(map[int]bool)`
`-	for i := 1; i <= max; i++ {`
`-		ts[triangle(i)] = true`
`-	}`
`-`
`-	return ts`
`-}`
`-`
`-func main() {`
`-	data, _ := ioutil.ReadFile("words.txt")`
`-	re := regexp.MustCompile("[A-Z]+")`
`-`
`-	ts := triangles(1000)`
`-`
`-	count := 0`
`-	for _, word := range re.FindAll(data, -1) {`
`-		n := wordToNumber(word)`
`-		if ts[n] {`
`-			count++`
`-		}`
`-	}`
`-`
`-	fmt.Println(count)`
`-`
`-}`

# File go/5.go

`-/*`
`-2520 is the smallest number that can be divided by each of the numbers from 1 to`
`-10 without any remainder.`
`-`
`-What is the smallest positive number that is evenly divisible by all of the`
`-numbers from 1 to 20?`
`-`
`-Answer: 232792560`
`-*/`
`-`
`-package main`
`-`
`-import "fmt"`
`-`
`-func isDivisible(n int) bool {`
`-	for i := 1; i < 21; i++ {`
`-		if n%i != 0 {`
`-			return false`
`-		}`
`-	}`
`-	return true`
`-}`
`-`
`-func main() {`
`-	for i := 20; true; i++ {`
`-		if isDivisible(i) {`
`-			fmt.Println(i)`
`-			break`
`-		}`
`-	}`
`-}`

# File go/6.go

`-/*`
`-The sum of the squares of the first ten natural numbers is,`
`-1^2 + 2^2 + ... + 10^2 = 385`
`-`
`-The square of the sum of the first ten natural numbers is,`
`-(1 + 2 + ... + 10)^2 = 552 = 3025`
`-`
`-Hence the difference between the sum of the squares of the first ten natural`
`-numbers and the square of the sum is 3025 − 385 = 2640.`
`-`
`-Find the difference between the sum of the squares of the first one hundred`
`-natural numbers and the square of the sum.`
`-`
`-Answer: 25164150`
`-*/`
`-`
`-package main`
`-`
`-import "fmt"`
`-`
`-func sumOfSquares(n uint64) uint64 {`
`-	sum := uint64(0)`
`-	for i := uint64(1); i <= n; i++ {`
`-		sum += (i * i)`
`-	}`
`-`
`-	return sum`
`-}`
`-`
`-func squareOfSums(n uint64) uint64 {`
`-	sum := uint64(0)`
`-	for i := uint64(1); i <= n; i++ {`
`-		sum += i`
`-	}`
`-`
`-	return sum * sum`
`-}`
`-`
`-func main() {`
`-	fmt.Println(squareOfSums(100) - sumOfSquares(100))`
`-}`

# File go/7.go

`-/*`
`-By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that`
`-the 6th prime is 13.`
`-`
`-What is the 10001st prime number?`
`-`
`-Answer: 104743`
`-*/`
`-`
`-package main`
`-`
`-import (`
`-	"fmt"`
`-`
`-	"./primes"`
`-)`
`-`
`-func main() {`
`-	i := 0`
`-	for p := range primes.Primes() {`
`-		i++`
`-		if i > 10000 {`
`-			fmt.Println(p)`
`-			break`
`-		}`
`-	}`
`-`
`-}`

# File go/8.go

`-/*`
`-Find the greatest product of five consecutive digits in the 1000-digit number.`
`-`
`-73167176531330624919225119674426574742355349194934`
`-96983520312774506326239578318016984801869478851843`
`-85861560789112949495459501737958331952853208805511`
`-12540698747158523863050715693290963295227443043557`
`-66896648950445244523161731856403098711121722383113`
`-62229893423380308135336276614282806444486645238749`
`-30358907296290491560440772390713810515859307960866`
`-70172427121883998797908792274921901699720888093776`
`-65727333001053367881220235421809751254540594752243`
`-52584907711670556013604839586446706324415722155397`
`-53697817977846174064955149290862569321978468622482`
`-83972241375657056057490261407972968652414535100474`
`-82166370484403199890008895243450658541227588666881`
`-16427171479924442928230863465674813919123162824586`
`-17866458359124566529476545682848912883142607690042`
`-24219022671055626321111109370544217506941658960408`
`-07198403850962455444362981230987879927244284909188`
`-84580156166097919133875499200524063689912560717606`
`-05886116467109405077541002256983155200055935729725`
`-71636269561882670428252483600823257530420752963450`
`-`
`-Answer: 40824`
`-*/`
`-`
`-package main`
`-`
`-import (`
`-	"container/ring"`
`-	"fmt"`
`-)`
`-`
`-const (`
`-	s = ``
`-    73167176531330624919225119674426574742355349194934`
`-    96983520312774506326239578318016984801869478851843`
`-    85861560789112949495459501737958331952853208805511`
`-    12540698747158523863050715693290963295227443043557`
`-    66896648950445244523161731856403098711121722383113`
`-    62229893423380308135336276614282806444486645238749`
`-    30358907296290491560440772390713810515859307960866`
`-    70172427121883998797908792274921901699720888093776`
`-    65727333001053367881220235421809751254540594752243`
`-    52584907711670556013604839586446706324415722155397`
`-    53697817977846174064955149290862569321978468622482`
`-    83972241375657056057490261407972968652414535100474`
`-    82166370484403199890008895243450658541227588666881`
`-    16427171479924442928230863465674813919123162824586`
`-    17866458359124566529476545682848912883142607690042`
`-    24219022671055626321111109370544217506941658960408`
`-    07198403850962455444362981230987879927244284909188`
`-    84580156166097919133875499200524063689912560717606`
`-    05886116467109405077541002256983155200055935729725`
`-    71636269561882670428252483600823257530420752963450``
`-)`
`-`
`-func digits() chan int {`
`-	out := make(chan int)`
`-	go func() {`
`-		for i := 0; i < len(s); i++ {`
`-			c := s[i]`
`-			if c >= '0' && c <= '9' {`
`-				out <- int(c) - int('0')`
`-			}`
`-		}`
`-		close(out)`
`-	}()`
`-`
`-	return out`
`-}`
`-`
`-func product(r *ring.Ring) int {`
`-	p := 1`
`-	r.Do(func(i interface{}) { p *= i.(int) })`
`-`
`-	return p`
`-}`
`-`
`-func products() chan int {`
`-	out := make(chan int)`
`-`
`-	go func() {`
`-		r := ring.New(5)`
`-		i := 0`
`-		for d := range digits() {`
`-			r.Value = d`
`-			i++`
`-			r = r.Next()`
`-`
`-			// Ring not full yet`
`-			if i < 5 {`
`-				continue`
`-			}`
`-`
`-			out <- product(r)`
`-		}`
`-		close(out)`
`-	}()`
`-`
`-	return out`
`-}`
`-`
`-func main() {`
`-	max_p := 0`
`-	for p := range products() {`
`-		if p > max_p {`
`-			max_p = p`
`-		}`
`-	}`
`-`
`-	fmt.Println(max_p)`
`-}`

# File go/9.go

`-/*`
`-A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,`
`-a^2 + b^2 = c^2`
`-`
`-For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.`
`-`
`-There exists exactly one Pythagorean triplet for which a + b + c = 1000.`
`-Find the product abc.`
`-`
`-Answer: 31875000`
`-*/`
`-`
`-package main`
`-`
`-import "fmt"`
`-`
`-func isPythagorean(a, b, c int) bool {`
`-	return a*a+b*b == c*c`
`-}`
`-`
`-func main() {`
`-	for a := 1; a < 1000; a++ {`
`-		for b := 1; b < 1000; b++ {`
`-			for c := 1; c < 1000; c++ {`
`-				if a+b+c == 1000 && isPythagorean(a, b, c) {`
`-					fmt.Println(a * b * c)`
`-					return`
`-				}`
`-			}`
`-		}`
`-	}`
`-	fmt.Println(isPythagorean(3, 4, 5))`
`-}`

# File go/Makefile

`-%.6: %.go`
`-	6g \$<`
`-%: %.6`
`-	6l -o \$@ \$<`
`-`
`-LIBS_SRC=\$(wildcard [a-z]*.go)`
`-LIBS=\$(LIBS_SRC:%.go=%.6)`
`-`
`-SRC = \$(wildcard [0-9]*.go)`
`-PROGRAMS = \$(SRC:%.go=%)`
`-`
`-all: \$(LIBS) \$(PROGRAMS)`
`-`
`-clean:`
`-	rm -f \$(PROGRAMS)`
`-	rm -f \$(LIBS)`
`-	rm -f \$(PROGRAMS:%=%.6)`
`-`
`-fresh: clean all`
`-`
`-.PHONY: all clean fresh`

# File go/names.txt

`-"MARY","PATRICIA","LINDA","BARBARA","ELIZABETH","JENNIFER","MARIA","SUSAN","MARGARET","DOROTHY","LISA","NANCY","KAREN","BETTY","HELEN","SANDRA","DONNA","CAROL","RUTH","SHARON","MICHELLE","LAURA","SARAH","KIMBERLY","DEBORAH","JESSICA","SHIRLEY","CYNTHIA","ANGELA","MELISSA","BRENDA","AMY","ANNA","REBECCA","VIRGINIA","KATHLEEN","PAMELA","MARTHA","DEBRA","AMANDA","STEPHANIE","CAROLYN","CHRISTINE","MARIE","JANET","CATHERINE","FRANCES","ANN","JOYCE","DIANE","ALICE","JULIE","HEATHER","TERESA","DORIS","GLORIA","EVELYN","JEAN","CHERYL","MILDRED","KATHERINE","JOAN","ASHLEY","JUDITH","ROSE","JANICE","KELLY","NICOLE","JUDY","CHRISTINA","KATHY","THERESA","BEVERLY","DENISE","TAMMY","IRENE","JANE","LORI","RACHEL","MARILYN","ANDREA","KATHRYN","LOUISE","SARA","ANNE","JACQUELINE","WANDA","BONNIE","JULIA","RUBY","LOIS","TINA","PHYLLIS","NORMA","PAULA","DIANA","ANNIE","LILLIAN","EMILY","ROBIN","PEGGY","CRYSTAL","GLADYS","RITA","DAWN","CONNIE","FLORENCE","TRACY","EDNA","TIFFANY","CARMEN","ROSA","CINDY","GRACE","WENDY","VICTORIA","EDITH","KIM","SHERRY","SYLVIA","JOSEPHINE","THELMA","SHANNON","SHEILA","ETHEL","ELLEN","ELAINE","MARJORIE","CARRIE","CHARLOTTE","MONICA","ESTHER","PAULINE","EMMA","JUANITA","ANITA","RHONDA","HAZEL","AMBER","EVA","DEBBIE","APRIL","LESLIE","CLARA","LUCILLE","JAMIE","JOANNE","ELEANOR","VALERIE","DANIELLE","MEGAN","ALICIA","SUZANNE","MICHELE","GAIL","BERTHA","DARLENE","VERONICA","JILL","ERIN","GERALDINE","LAUREN","CATHY","JOANN","LORRAINE","LYNN","SALLY","REGINA","ERICA","BEATRICE","DOLORES","BERNICE","AUDREY","YVONNE","ANNETTE","JUNE","SAMANTHA","MARION","DANA","STACY","ANA","RENEE","IDA","VIVIAN","ROBERTA","HOLLY","BRITTANY","MELANIE","LORETTA","YOLANDA","JEANETTE","LAURIE","KATIE","KRISTEN","VANESSA","ALMA","SUE","ELSIE","BETH","JEANNE","VICKI","CARLA","TARA","ROSEMARY","EILEEN","TERRI","GERTRUDE","LUCY","TONYA","ELLA","STACEY","WILMA","GINA","KRISTIN","JESSIE","NATALIE","AGNES","VERA","WILLIE","CHARLENE","BESSIE","DELORES","MELINDA","PEARL","ARLENE","MAUREEN","COLLEEN","ALLISON","TAMARA","JOY","GEORGIA","CONSTANCE","LILLIE","CLAUDIA","JACKIE","MARCIA","TANYA","NELLIE","MINNIE","MARLENE","HEIDI","GLENDA","LYDIA","VIOLA","COURTNEY","MARIAN","STELLA","CAROLINE","DORA","JO","VICKIE","MATTIE","TERRY","MAXINE","IRMA","MABEL","MARSHA","MYRTLE","LENA","CHRISTY","DEANNA","PATSY","HILDA","GWENDOLYN","JENNIE","NORA","MARGIE","NINA","CASSANDRA","LEAH","PENNY","KAY","PRISCILLA","NAOMI","CAROLE","BRANDY","OLGA","BILLIE","DIANNE","TRACEY","LEONA","JENNY","FELICIA","SONIA","MIRIAM","VELMA","BECKY","BOBBIE","VIOLET","KRISTINA","TONI","MISTY","MAE","SHELLY","DAISY","RAMONA","SHERRI","ERIKA","KATRINA","CLAIRE","LINDSEY","LINDSAY","GENEVA","GUADALUPE","BELINDA","MARGARITA","SHERYL","CORA","FAYE","ADA","NATASHA","SABRINA","ISABEL","MARGUERITE","HATTIE","HARRIET","MOLLY","CECILIA","KRISTI","BRANDI","BLANCHE","SANDY","ROSIE","JOANNA","IRIS","EUNICE","ANGIE","INEZ","LYNDA","MADELINE","AMELIA","ALBERTA","GENEVIEVE","MONIQUE","JODI","JANIE","MAGGIE","KAYLA","SONYA","JAN","LEE","KRISTINE","CANDACE","FANNIE","MARYANN","OPAL","ALISON","YVETTE","MELODY","LUZ","SUSIE","OLIVIA","FLORA","SHELLEY","KRISTY","MAMIE","LULA","LOLA","VERNA","BEULAH","ANTOINETTE","CANDICE","JUANA","JEANNETTE","PAM","KELLI","HANNAH","WHITNEY","BRIDGET","KARLA","CELIA","LATOYA","PATTY","SHELIA","GAYLE","DELLA","VICKY","LYNNE","SHERI","MARIANNE","KARA","JACQUELYN","ERMA","BLANCA","MYRA","LETICIA","PAT","KRISTA","ROXANNE","ANGELICA","JOHNNIE","ROBYN","FRANCIS","ADRIENNE","ROSALIE","ALEXANDRA","BROOKE","BETHANY","SADIE","BERNADETTE","TRACI","JODY","KENDRA","JASMINE","NICHOLE","RACHAEL","CHELSEA","MABLE","ERNESTINE","MURIEL","MARCELLA","ELENA","KRYSTAL","ANGELINA","NADINE","KARI","ESTELLE","DIANNA","PAULETTE","LORA","MONA","DOREEN","ROSEMARIE","ANGEL","DESIREE","ANTONIA","HOPE","GINGER","JANIS","BETSY","CHRISTIE","FREDA","MERCEDES","MEREDITH","LYNETTE","TERI","CRISTINA","EULA","LEIGH","MEGHAN","SOPHIA","ELOISE","ROCHELLE","GRETCHEN","CECELIA","RAQUEL","HENRIETTA","ALYSSA","JANA","KELLEY","GWEN","KERRY","JENNA","TRICIA","LAVERNE","OLIVE","ALEXIS","TASHA","SILVIA","ELVIRA","CASEY","DELIA","SOPHIE","KATE","PATTI","LORENA","KELLIE","SONJA","LILA","LANA","DARLA","MAY","MINDY","ESSIE","MANDY","LORENE","ELSA","JOSEFINA","JEANNIE","MIRANDA","DIXIE","LUCIA","MARTA","FAITH","LELA","JOHANNA","SHARI","CAMILLE","TAMI","SHAWNA","ELISA","EBONY","MELBA","ORA","NETTIE","TABITHA","OLLIE","JAIME","WINIFRED","KRISTIE","MARINA","ALISHA","AIMEE","RENA","MYRNA","MARLA","TAMMIE","LATASHA","BONITA","PATRICE","RONDA","SHERRIE","ADDIE","FRANCINE","DELORIS","STACIE","ADRIANA","CHERI","SHELBY","ABIGAIL","CELESTE","JEWEL","CARA","ADELE","REBEKAH","LUCINDA","DORTHY","CHRIS","EFFIE","TRINA","REBA","SHAWN","SALLIE","AURORA","LENORA","ETTA","LOTTIE","KERRI","TRISHA","NIKKI","ESTELLA","FRANCISCA","JOSIE","TRACIE","MARISSA","KARIN","BRITTNEY","JANELLE","LOURDES","LAUREL","HELENE","FERN","ELVA","CORINNE","KELSEY","INA","BETTIE","ELISABETH","AIDA","CAITLIN","INGRID","IVA","EUGENIA","CHRISTA","GOLDIE","CASSIE","MAUDE","JENIFER","THERESE","FRANKIE","DENA","LORNA","JANETTE","LATONYA","CANDY","MORGAN","CONSUELO","TAMIKA","ROSETTA","DEBORA","CHERIE","POLLY","DINA","JEWELL","FAY","JILLIAN","DOROTHEA","NELL","TRUDY","ESPERANZA","PATRICA","KIMBERLEY","SHANNA","HELENA","CAROLINA","CLEO","STEFANIE","ROSARIO","OLA","JANINE","MOLLIE","LUPE","ALISA","LOU","MARIBEL","SUSANNE","BETTE","SUSANA","ELISE","CECILE","ISABELLE","LESLEY","JOCELYN","PAIGE","JONI","RACHELLE","LEOLA","DAPHNE","ALTA","ESTER","PETRA","GRACIELA","IMOGENE","JOLENE","KEISHA","LACEY","GLENNA","GABRIELA","KERI","URSULA","LIZZIE","KIRSTEN","SHANA","ADELINE","MAYRA","JAYNE","JACLYN","GRACIE","SONDRA","CARMELA","MARISA","ROSALIND","CHARITY","TONIA","BEATRIZ","MARISOL","CLARICE","JEANINE","SHEENA","ANGELINE","FRIEDA","LILY","ROBBIE","SHAUNA","MILLIE","CLAUDETTE","CATHLEEN","ANGELIA","GABRIELLE","AUTUMN","KATHARINE","SUMMER","JODIE","STACI","LEA","CHRISTI","JIMMIE","JUSTINE","ELMA","LUELLA","MARGRET","DOMINIQUE","SOCORRO","RENE","MARTINA","MARGO","MAVIS","CALLIE","BOBBI","MARITZA","LUCILE","LEANNE","JEANNINE","DEANA","AILEEN","LORIE","LADONNA","WILLA","MANUELA","GALE","SELMA","DOLLY","SYBIL","ABBY","LARA","DALE","IVY","DEE","WINNIE","MARCY","LUISA","JERI","MAGDALENA","OFELIA","MEAGAN","AUDRA","MATILDA","LEILA","CORNELIA","BIANCA","SIMONE","BETTYE","RANDI","VIRGIE","LATISHA","BARBRA","GEORGINA","ELIZA","LEANN","BRIDGETTE","RHODA","HALEY","ADELA","NOLA","BERNADINE","FLOSSIE","ILA","GRETA","RUTHIE","NELDA","MINERVA","LILLY","TERRIE","LETHA","HILARY","ESTELA","VALARIE","BRIANNA","ROSALYN","EARLINE","CATALINA","AVA","MIA","CLARISSA","LIDIA","CORRINE","ALEXANDRIA","CONCEPCION","TIA","SHARRON","RAE","DONA","ERICKA","JAMI","ELNORA","CHANDRA","LENORE","NEVA","MARYLOU","MELISA","TABATHA","SERENA","AVIS","ALLIE","SOFIA","JEANIE","ODESSA","NANNIE","HARRIETT","LORAINE","PENELOPE","MILAGROS","EMILIA","BENITA","ALLYSON","ASHLEE","TANIA","TOMMIE","ESMERALDA","KARINA","EVE","PEARLIE","ZELMA","MALINDA","NOREEN","TAMEKA","SAUNDRA","HILLARY","AMIE","ALTHEA","ROSALINDA","JORDAN","LILIA","ALANA","GAY","CLARE","ALEJANDRA","ELINOR","MICHAEL","LORRIE","JERRI","DARCY","EARNESTINE","CARMELLA","TAYLOR","NOEMI","MARCIE","LIZA","ANNABELLE","LOUISA","EARLENE","MALLORY","CARLENE","NITA","SELENA","TANISHA","KATY","JULIANNE","JOHN","LAKISHA","EDWINA","MARICELA","MARGERY","KENYA","DOLLIE","ROXIE","ROSLYN","KATHRINE","NANETTE","CHARMAINE","LAVONNE","ILENE","KRIS","TAMMI","SUZETTE","CORINE","KAYE","JERRY","MERLE","CHRYSTAL","LINA","DEANNE","LILIAN","JULIANA","ALINE","LUANN","KASEY","MARYANNE","EVANGELINE","COLETTE","MELVA","LAWANDA","YESENIA","NADIA","MADGE","KATHIE","EDDIE","OPHELIA","VALERIA","NONA","MITZI","MARI","GEORGETTE","CLAUDINE","FRAN","ALISSA","ROSEANN","LAKEISHA","SUSANNA","REVA","DEIDRE","CHASITY","SHEREE","CARLY","JAMES","ELVIA","ALYCE","DEIRDRE","GENA","BRIANA","ARACELI","KATELYN","ROSANNE","WENDI","TESSA","BERTA","MARVA","IMELDA","MARIETTA","MARCI","LEONOR","ARLINE","SASHA","MADELYN","JANNA","JULIETTE","DEENA","AURELIA","JOSEFA","AUGUSTA","LILIANA","YOUNG","CHRISTIAN","LESSIE","AMALIA","SAVANNAH","ANASTASIA","VILMA","NATALIA","ROSELLA","LYNNETTE","CORINA","ALFREDA","LEANNA","CAREY","AMPARO","COLEEN","TAMRA","AISHA","WILDA","KARYN","CHERRY","QUEEN","MAURA","MAI","EVANGELINA","ROSANNA","HALLIE","ERNA","ENID","MARIANA","LACY","JULIET","JACKLYN","FREIDA","MADELEINE","MARA","HESTER","CATHRYN","LELIA","CASANDRA","BRIDGETT","ANGELITA","JANNIE","DIONNE","ANNMARIE","KATINA","BERYL","PHOEBE","MILLICENT","KATHERYN","DIANN","CARISSA","MARYELLEN","LIZ","LAURI","HELGA","GILDA","ADRIAN","RHEA","MARQUITA","HOLLIE","TISHA","TAMERA","ANGELIQUE","FRANCESCA","BRITNEY","KAITLIN","LOLITA","FLORINE","ROWENA","REYNA","TWILA","FANNY","JANELL","INES","CONCETTA","BERTIE","ALBA","BRIGITTE","ALYSON","VONDA","PANSY","ELBA","NOELLE","LETITIA","KITTY","DEANN","BRANDIE","LOUELLA","LETA","FELECIA","SHARLENE","LESA","BEVERLEY","ROBERT","ISABELLA","HERMINIA","TERRA","CELINA","TORI","OCTAVIA","JADE","DENICE","GERMAINE","SIERRA","MICHELL","CORTNEY","NELLY","DORETHA","SYDNEY","DEIDRA","MONIKA","LASHONDA","JUDI","CHELSEY","ANTIONETTE","MARGOT","BOBBY","ADELAIDE","NAN","LEEANN","ELISHA","DESSIE","LIBBY","KATHI","GAYLA","LATANYA","MINA","MELLISA","KIMBERLEE","JASMIN","RENAE","ZELDA","ELDA","MA","JUSTINA","GUSSIE","EMILIE","CAMILLA","ABBIE","ROCIO","KAITLYN","JESSE","EDYTHE","ASHLEIGH","SELINA","LAKESHA","GERI","ALLENE","PAMALA","MICHAELA","DAYNA","CARYN","ROSALIA","SUN","JACQULINE","REBECA","MARYBETH","KRYSTLE","IOLA","DOTTIE","BENNIE","BELLE","AUBREY","GRISELDA","ERNESTINA","ELIDA","ADRIANNE","DEMETRIA","DELMA","CHONG","JAQUELINE","DESTINY","ARLEEN","VIRGINA","RETHA","FATIMA","TILLIE","ELEANORE","CARI","TREVA","BIRDIE","WILHELMINA","ROSALEE","MAURINE","LATRICE","YONG","JENA","TARYN","ELIA","DEBBY","MAUDIE","JEANNA","DELILAH","CATRINA","SHONDA","HORTENCIA","THEODORA","TERESITA","ROBBIN","DANETTE","MARYJANE","FREDDIE","DELPHINE","BRIANNE","NILDA","DANNA","CINDI","BESS","IONA","HANNA","ARIEL","WINONA","VIDA","ROSITA","MARIANNA","WILLIAM","RACHEAL","GUILLERMINA","ELOISA","CELESTINE","CAREN","MALISSA","LONA","CHANTEL","SHELLIE","MARISELA","LEORA","AGATHA","SOLEDAD","MIGDALIA","IVETTE","CHRISTEN","ATHENA","JANEL","CHLOE","VEDA","PATTIE","TESSIE","TERA","MARILYNN","LUCRETIA","KARRIE","DINAH","DANIELA","ALECIA","ADELINA","VERNICE","SHIELA","PORTIA","MERRY","LASHAWN","DEVON","DARA","TAWANA","OMA","VERDA","CHRISTIN","ALENE","ZELLA","SANDI","RAFAELA","MAYA","KIRA","CANDIDA","ALVINA","SUZAN","SHAYLA","LYN","LETTIE","ALVA","SAMATHA","ORALIA","MATILDE","MADONNA","LARISSA","VESTA","RENITA","INDIA","DELOIS","SHANDA","PHILLIS","LORRI","ERLINDA","CRUZ","CATHRINE","BARB","ZOE","ISABELL","IONE","GISELA","CHARLIE","VALENCIA","ROXANNA","MAYME","KISHA","ELLIE","MELLISSA","DORRIS","DALIA","BELLA","ANNETTA","ZOILA","RETA","REINA","LAURETTA","KYLIE","CHRISTAL","PILAR","CHARLA","ELISSA","TIFFANI","TANA","PAULINA","LEOTA","BREANNA","JAYME","CARMEL","VERNELL","TOMASA","MANDI","DOMINGA","SANTA","MELODIE","LURA","ALEXA","TAMELA","RYAN","MIRNA","KERRIE","VENUS","NOEL","FELICITA","CRISTY","CARMELITA","BERNIECE","ANNEMARIE","TIARA","ROSEANNE","MISSY","CORI","ROXANA","PRICILLA","KRISTAL","JUNG","ELYSE","HAYDEE","ALETHA","BETTINA","MARGE","GILLIAN","FILOMENA","CHARLES","ZENAIDA","HARRIETTE","CARIDAD","VADA","UNA","ARETHA","PEARLINE","MARJORY","MARCELA","FLOR","EVETTE","ELOUISE","ALINA","TRINIDAD","DAVID","DAMARIS","CATHARINE","CARROLL","BELVA","NAKIA","MARLENA","LUANNE","LORINE","KARON","DORENE","DANITA","BRENNA","TATIANA","SAMMIE","LOUANN","LOREN","JULIANNA","ANDRIA","PHILOMENA","LUCILA","LEONORA","DOVIE","ROMONA","MIMI","JACQUELIN","GAYE","TONJA","MISTI","JOE","GENE","CHASTITY","STACIA","ROXANN","MICAELA","NIKITA","MEI","VELDA","MARLYS","JOHNNA","AURA","LAVERN","IVONNE","HAYLEY","NICKI","MAJORIE","HERLINDA","GEORGE","ALPHA","YADIRA","PERLA","GREGORIA","DANIEL","ANTONETTE","SHELLI","MOZELLE","MARIAH","JOELLE","CORDELIA","JOSETTE","CHIQUITA","TRISTA","LOUIS","LAQUITA","GEORGIANA","CANDI","SHANON","LONNIE","HILDEGARD","CECIL","VALENTINA","STEPHANY","MAGDA","KAROL","GERRY","GABRIELLA","TIANA","ROMA","RICHELLE","RAY","PRINCESS","OLETA","JACQUE","IDELLA","ALAINA","SUZANNA","JOVITA","BLAIR","TOSHA","RAVEN","NEREIDA","MARLYN","KYLA","JOSEPH","DELFINA","TENA","STEPHENIE","SABINA","NATHALIE","MARCELLE","GERTIE","DARLEEN","THEA","SHARONDA","SHANTEL","BELEN","VENESSA","ROSALINA","ONA","GENOVEVA","COREY","CLEMENTINE","ROSALBA","RENATE","RENATA","MI","IVORY","GEORGIANNA","FLOY","DORCAS","ARIANA","TYRA","THEDA","MARIAM","JULI","JESICA","DONNIE","VIKKI","VERLA","ROSELYN","MELVINA","JANNETTE","GINNY","DEBRAH","CORRIE","ASIA","VIOLETA","MYRTIS","LATRICIA","COLLETTE","CHARLEEN","ANISSA","VIVIANA","TWYLA","PRECIOUS","NEDRA","LATONIA","LAN","HELLEN","FABIOLA","ANNAMARIE","ADELL","SHARYN","CHANTAL","NIKI","MAUD","LIZETTE","LINDY","KIA","KESHA","JEANA","DANELLE","CHARLINE","CHANEL","CARROL","VALORIE","LIA","DORTHA","CRISTAL","SUNNY","LEONE","LEILANI","GERRI","DEBI","ANDRA","KESHIA","IMA","EULALIA","EASTER","DULCE","NATIVIDAD","LINNIE","KAMI","GEORGIE","CATINA","BROOK","ALDA","WINNIFRED","SHARLA","RUTHANN","MEAGHAN","MAGDALENE","LISSETTE","ADELAIDA","VENITA","TRENA","SHIRLENE","SHAMEKA","ELIZEBETH","DIAN","SHANTA","MICKEY","LATOSHA","CARLOTTA","WINDY","SOON","ROSINA","MARIANN","LEISA","JONNIE","DAWNA","CATHIE","BILLY","ASTRID","SIDNEY","LAUREEN","JANEEN","HOLLI","FAWN","VICKEY","TERESSA","SHANTE","RUBYE","MARCELINA","CHANDA","CARY","TERESE","SCARLETT","MARTY","MARNIE","LULU","LISETTE","JENIFFER","ELENOR","DORINDA","DONITA","CARMAN","BERNITA","ALTAGRACIA","ALETA","ADRIANNA","ZORAIDA","RONNIE","NICOLA","LYNDSEY","KENDALL","JANINA","CHRISSY","AMI","STARLA","PHYLIS","PHUONG","KYRA","CHARISSE","BLANCH","SANJUANITA","RONA","NANCI","MARILEE","MARANDA","CORY","BRIGETTE","SANJUANA","MARITA","KASSANDRA","JOYCELYN","IRA","FELIPA","CHELSIE","BONNY","MIREYA","LORENZA","KYONG","ILEANA","CANDELARIA","TONY","TOBY","SHERIE","OK","MARK","LUCIE","LEATRICE","LAKESHIA","GERDA","EDIE","BAMBI","MARYLIN","LAVON","HORTENSE","GARNET","EVIE","TRESSA","SHAYNA","LAVINA","KYUNG","JEANETTA","SHERRILL","SHARA","PHYLISS","MITTIE","ANABEL","ALESIA","THUY","TAWANDA","RICHARD","JOANIE","TIFFANIE","LASHANDA","KARISSA","ENRIQUETA","DARIA","DANIELLA","CORINNA","ALANNA","ABBEY","ROXANE","ROSEANNA","MAGNOLIA","LIDA","KYLE","JOELLEN","ERA","CORAL","CARLEEN","TRESA","PEGGIE","NOVELLA","NILA","MAYBELLE","JENELLE","CARINA","NOVA","MELINA","MARQUERITE","MARGARETTE","JOSEPHINA","EVONNE","DEVIN","CINTHIA","ALBINA","TOYA","TAWNYA","SHERITA","SANTOS","MYRIAM","LIZABETH","LISE","KEELY","JENNI","GISELLE","CHERYLE","ARDITH","ARDIS","ALESHA","ADRIANE","SHAINA","LINNEA","KAROLYN","HONG","FLORIDA","FELISHA","DORI","DARCI","ARTIE","ARMIDA","ZOLA","XIOMARA","VERGIE","SHAMIKA","NENA","NANNETTE","MAXIE","LOVIE","JEANE","JAIMIE","INGE","FARRAH","ELAINA","CAITLYN","STARR","FELICITAS","CHERLY","CARYL","YOLONDA","YASMIN","TEENA","PRUDENCE","PENNIE","NYDIA","MACKENZIE","ORPHA","MARVEL","LIZBETH","LAURETTE","JERRIE","HERMELINDA","CAROLEE","TIERRA","MIRIAN","META","MELONY","KORI","JENNETTE","JAMILA","ENA","ANH","YOSHIKO","SUSANNAH","SALINA","RHIANNON","JOLEEN","CRISTINE","ASHTON","ARACELY","TOMEKA","SHALONDA","MARTI","LACIE","KALA","JADA","ILSE","HAILEY","BRITTANI","ZONA","SYBLE","SHERRYL","RANDY","NIDIA","MARLO","KANDICE","KANDI","DEB","DEAN","AMERICA","ALYCIA","TOMMY","RONNA","NORENE","MERCY","JOSE","INGEBORG","GIOVANNA","GEMMA","CHRISTEL","AUDRY","ZORA","VITA","VAN","TRISH","STEPHAINE","SHIRLEE","SHANIKA","MELONIE","MAZIE","JAZMIN","INGA","HOA","HETTIE","GERALYN","FONDA","ESTRELLA","ADELLA","SU","SARITA","RINA","MILISSA","MARIBETH","GOLDA","EVON","ETHELYN","ENEDINA","CHERISE","CHANA","VELVA","TAWANNA","SADE","MIRTA","LI","KARIE","JACINTA","ELNA","DAVINA","CIERRA","ASHLIE","ALBERTHA","TANESHA","STEPHANI","NELLE","MINDI","LU","LORINDA","LARUE","FLORENE","DEMETRA","DEDRA","CIARA","CHANTELLE","ASHLY","SUZY","ROSALVA","NOELIA","LYDA","LEATHA","KRYSTYNA","KRISTAN","KARRI","DARLINE","DARCIE","CINDA","CHEYENNE","CHERRIE","AWILDA","ALMEDA","ROLANDA","LANETTE","JERILYN","GISELE","EVALYN","CYNDI","CLETA","CARIN","ZINA","ZENA","VELIA","TANIKA","PAUL","CHARISSA","THOMAS","TALIA","MARGARETE","LAVONDA","KAYLEE","KATHLENE","JONNA","IRENA","ILONA","IDALIA","CANDIS","CANDANCE","BRANDEE","ANITRA","ALIDA","SIGRID","NICOLETTE","MARYJO","LINETTE","HEDWIG","CHRISTIANA","CASSIDY","ALEXIA","TRESSIE","MODESTA","LUPITA","LITA","GLADIS","EVELIA","DAVIDA","CHERRI","CECILY","ASHELY","ANNABEL","AGUSTINA","WANITA","SHIRLY","ROSAURA","HULDA","EUN","BAILEY","YETTA","VERONA","THOMASINA","SIBYL","SHANNAN","MECHELLE","LUE","LEANDRA","LANI","KYLEE","KANDY","JOLYNN","FERNE","EBONI","CORENE","ALYSIA","ZULA","NADA","MOIRA","LYNDSAY","LORRETTA","JUAN","JAMMIE","HORTENSIA","GAYNELL","CAMERON","ADRIA","VINA","VICENTA","TANGELA","STEPHINE","NORINE","NELLA","LIANA","LESLEE","KIMBERELY","ILIANA","GLORY","FELICA","EMOGENE","ELFRIEDE","EDEN","EARTHA","CARMA","BEA","OCIE","MARRY","LENNIE","KIARA","JACALYN","CARLOTA","ARIELLE","YU","STAR","OTILIA","KIRSTIN","KACEY","JOHNETTA","JOEY","JOETTA","JERALDINE","JAUNITA","ELANA","DORTHEA","CAMI","AMADA","ADELIA","VERNITA","TAMAR","SIOBHAN","RENEA","RASHIDA","OUIDA","ODELL","NILSA","MERYL","KRISTYN","JULIETA","DANICA","BREANNE","AUREA","ANGLEA","SHERRON","ODETTE","MALIA","LORELEI","LIN","LEESA","KENNA","KATHLYN","FIONA","CHARLETTE","SUZIE","SHANTELL","SABRA","RACQUEL","MYONG","MIRA","MARTINE","LUCIENNE","LAVADA","JULIANN","JOHNIE","ELVERA","DELPHIA","CLAIR","CHRISTIANE","CHAROLETTE","CARRI","AUGUSTINE","ASHA","ANGELLA","PAOLA","NINFA","LEDA","LAI","EDA","SUNSHINE","STEFANI","SHANELL","PALMA","MACHELLE","LISSA","KECIA","KATHRYNE","KARLENE","JULISSA","JETTIE","JENNIFFER","HUI","CORRINA","CHRISTOPHER","CAROLANN","ALENA","TESS","ROSARIA","MYRTICE","MARYLEE","LIANE","KENYATTA","JUDIE","JANEY","IN","ELMIRA","ELDORA","DENNA","CRISTI","CATHI","ZAIDA","VONNIE","VIVA","VERNIE","ROSALINE","MARIELA","LUCIANA","LESLI","KARAN","FELICE","DENEEN","ADINA","WYNONA","TARSHA","SHERON","SHASTA","SHANITA","SHANI","SHANDRA","RANDA","PINKIE","PARIS","NELIDA","MARILOU","LYLA","LAURENE","LACI","JOI","JANENE","DOROTHA","DANIELE","DANI","CAROLYNN","CARLYN","BERENICE","AYESHA","ANNELIESE","ALETHEA","THERSA","TAMIKO","RUFINA","OLIVA","MOZELL","MARYLYN","MADISON","KRISTIAN","KATHYRN","KASANDRA","KANDACE","JANAE","GABRIEL","DOMENICA","DEBBRA","DANNIELLE","CHUN","BUFFY","BARBIE","ARCELIA","AJA","ZENOBIA","SHAREN","SHAREE","PATRICK","PAGE","MY","LAVINIA","KUM","KACIE","JACKELINE","HUONG","FELISA","EMELIA","ELEANORA","CYTHIA","CRISTIN","CLYDE","CLARIBEL","CARON","ANASTACIA","ZULMA","ZANDRA","YOKO","TENISHA","SUSANN","SHERILYN","SHAY","SHAWANDA","SABINE","ROMANA","MATHILDA","LINSEY","KEIKO","JOANA","ISELA","GRETTA","GEORGETTA","EUGENIE","DUSTY","DESIRAE","DELORA","CORAZON","ANTONINA","ANIKA","WILLENE","TRACEE","TAMATHA","REGAN","NICHELLE","MICKIE","MAEGAN","LUANA","LANITA","KELSIE","EDELMIRA","BREE","AFTON","TEODORA","TAMIE","SHENA","MEG","LINH","KELI","KACI","DANYELLE","BRITT","ARLETTE","ALBERTINE","ADELLE","TIFFINY","STORMY","SIMONA","NUMBERS","NICOLASA","NICHOL","NIA","NAKISHA","MEE","MAIRA","LOREEN","KIZZY","JOHNNY","JAY","FALLON","CHRISTENE","BOBBYE","ANTHONY","YING","VINCENZA","TANJA","RUBIE","RONI","QUEENIE","MARGARETT","KIMBERLI","IRMGARD","IDELL","HILMA","EVELINA","ESTA","EMILEE","DENNISE","DANIA","CARL","CARIE","ANTONIO","WAI","SANG","RISA","RIKKI","PARTICIA","MUI","MASAKO","MARIO","LUVENIA","LOREE","LONI","LIEN","KEVIN","GIGI","FLORENCIA","DORIAN","DENITA","DALLAS","CHI","BILLYE","ALEXANDER","TOMIKA","SHARITA","RANA","NIKOLE","NEOMA","MARGARITE","MADALYN","LUCINA","LAILA","KALI","JENETTE","GABRIELE","EVELYNE","ELENORA","CLEMENTINA","ALEJANDRINA","ZULEMA","VIOLETTE","VANNESSA","THRESA","RETTA","PIA","PATIENCE","NOELLA","NICKIE","JONELL","DELTA","CHUNG","CHAYA","CAMELIA","BETHEL","ANYA","ANDREW","THANH","SUZANN","SPRING","SHU","MILA","LILLA","LAVERNA","KEESHA","KATTIE","GIA","GEORGENE","EVELINE","ESTELL","ELIZBETH","VIVIENNE","VALLIE","TRUDIE","STEPHANE","MICHEL","MAGALY","MADIE","KENYETTA","KARREN","JANETTA","HERMINE","HARMONY","DRUCILLA","DEBBI","CELESTINA","CANDIE","BRITNI","BECKIE","AMINA","ZITA","YUN","YOLANDE","VIVIEN","VERNETTA","TRUDI","SOMMER","PEARLE","PATRINA","OSSIE","NICOLLE","LOYCE","LETTY","LARISA","KATHARINA","JOSELYN","JONELLE","JENELL","IESHA","HEIDE","FLORINDA","FLORENTINA","FLO","ELODIA","DORINE","BRUNILDA","BRIGID","ASHLI","ARDELLA","TWANA","THU","TARAH","SUNG","SHEA","SHAVON","SHANE","SERINA","RAYNA","RAMONITA","NGA","MARGURITE","LUCRECIA","KOURTNEY","KATI","JESUS","JESENIA","DIAMOND","CRISTA","AYANA","ALICA","ALIA","VINNIE","SUELLEN","ROMELIA","RACHELL","PIPER","OLYMPIA","MICHIKO","KATHALEEN","JOLIE","JESSI","JANESSA","HANA","HA","ELEASE","CARLETTA","BRITANY","SHONA","SALOME","ROSAMOND","REGENA","RAINA","NGOC","NELIA","LOUVENIA","LESIA","LATRINA","LATICIA","LARHONDA","JINA","JACKI","HOLLIS","HOLLEY","EMMY","DEEANN","CORETTA","ARNETTA","VELVET","THALIA","SHANICE","NETA","MIKKI","MICKI","LONNA","LEANA","LASHUNDA","KILEY","JOYE","JACQULYN","IGNACIA","HYUN","HIROKO","HENRY","HENRIETTE","ELAYNE","DELINDA","DARNELL","DAHLIA","COREEN","CONSUELA","CONCHITA","CELINE","BABETTE","AYANNA","ANETTE","ALBERTINA","SKYE","SHAWNEE","SHANEKA","QUIANA","PAMELIA","MIN","MERRI","MERLENE","MARGIT","KIESHA","KIERA","KAYLENE","JODEE","JENISE","ERLENE","EMMIE","ELSE","DARYL","DALILA","DAISEY","CODY","CASIE","BELIA","BABARA","VERSIE","VANESA","SHELBA","SHAWNDA","SAM","NORMAN","NIKIA","NAOMA","MARNA","MARGERET","MADALINE","LAWANA","KINDRA","JUTTA","JAZMINE","JANETT","HANNELORE","GLENDORA","GERTRUD","GARNETT","FREEDA","FREDERICA","FLORANCE","FLAVIA","DENNIS","CARLINE","BEVERLEE","ANJANETTE","VALDA","TRINITY","TAMALA","STEVIE","SHONNA","SHA","SARINA","ONEIDA","MICAH","MERILYN","MARLEEN","LURLINE","LENNA","KATHERIN","JIN","JENI","HAE","GRACIA","GLADY","FARAH","ERIC","ENOLA","EMA","DOMINQUE","DEVONA","DELANA","CECILA","CAPRICE","ALYSHA","ALI","ALETHIA","VENA","THERESIA","TAWNY","SONG","SHAKIRA","SAMARA","SACHIKO","RACHELE","PAMELLA","NICKY","MARNI","MARIEL","MAREN","MALISA","LIGIA","LERA","LATORIA","LARAE","KIMBER","KATHERN","KAREY","JENNEFER","JANETH","HALINA","FREDIA","DELISA","DEBROAH","CIERA","CHIN","ANGELIKA","ANDREE","ALTHA","YEN","VIVAN","TERRESA","TANNA","SUK","SUDIE","SOO","SIGNE","SALENA","RONNI","REBBECCA","MYRTIE","MCKENZIE","MALIKA","MAIDA","LOAN","LEONARDA","KAYLEIGH","FRANCE","ETHYL","ELLYN","DAYLE","CAMMIE","BRITTNI","BIRGIT","AVELINA","ASUNCION","ARIANNA","AKIKO","VENICE","TYESHA","TONIE","TIESHA","TAKISHA","STEFFANIE","SINDY","SANTANA","MEGHANN","MANDA","MACIE","LADY","KELLYE","KELLEE","JOSLYN","JASON","INGER","INDIRA","GLINDA","GLENNIS","FERNANDA","FAUSTINA","ENEIDA","ELICIA","DOT","DIGNA","DELL","ARLETTA","ANDRE","WILLIA","TAMMARA","TABETHA","SHERRELL","SARI","REFUGIO","REBBECA","PAULETTA","NIEVES","NATOSHA","NAKITA","MAMMIE","KENISHA","KAZUKO","KASSIE","GARY","EARLEAN","DAPHINE","CORLISS","CLOTILDE","CAROLYNE","BERNETTA","AUGUSTINA","AUDREA","ANNIS","ANNABELL","YAN","TENNILLE","TAMICA","SELENE","SEAN","ROSANA","REGENIA","QIANA","MARKITA","MACY","LEEANNE","LAURINE","KYM","JESSENIA","JANITA","GEORGINE","GENIE","EMIKO","ELVIE","DEANDRA","DAGMAR","CORIE","COLLEN","CHERISH","ROMAINE","PORSHA","PEARLENE","MICHELINE","MERNA","MARGORIE","MARGARETTA","LORE","KENNETH","JENINE","HERMINA","FREDERICKA","ELKE","DRUSILLA","DORATHY","DIONE","DESIRE","CELENA","BRIGIDA","ANGELES","ALLEGRA","THEO","TAMEKIA","SYNTHIA","STEPHEN","SOOK","SLYVIA","ROSANN","REATHA","RAYE","MARQUETTA","MARGART","LING","LAYLA","KYMBERLY","KIANA","KAYLEEN","KATLYN","KARMEN","JOELLA","IRINA","EMELDA","ELENI","DETRA","CLEMMIE","CHERYLL","CHANTELL","CATHEY","ARNITA","ARLA","ANGLE","ANGELIC","ALYSE","ZOFIA","THOMASINE","TENNIE","SON","SHERLY","SHERLEY","SHARYL","REMEDIOS","PETRINA","NICKOLE","MYUNG","MYRLE","MOZELLA","LOUANNE","LISHA","LATIA","LANE","KRYSTA","JULIENNE","JOEL","JEANENE","JACQUALINE","ISAURA","GWENDA","EARLEEN","DONALD","CLEOPATRA","CARLIE","AUDIE","ANTONIETTA","ALISE","ALEX","VERDELL","VAL","TYLER","TOMOKO","THAO","TALISHA","STEVEN","SO","SHEMIKA","SHAUN","SCARLET","SAVANNA","SANTINA","ROSIA","RAEANN","ODILIA","NANA","MINNA","MAGAN","LYNELLE","LE","KARMA","JOEANN","IVANA","INELL","ILANA","HYE","HONEY","HEE","GUDRUN","FRANK","DREAMA","CRISSY","CHANTE","CARMELINA","ARVILLA","ARTHUR","ANNAMAE","ALVERA","ALEIDA","AARON","YEE","YANIRA","VANDA","TIANNA","TAM","STEFANIA","SHIRA","PERRY","NICOL","NANCIE","MONSERRATE","MINH","MELYNDA","MELANY","MATTHEW","LOVELLA","LAURE","KIRBY","KACY","JACQUELYNN","HYON","GERTHA","FRANCISCO","ELIANA","CHRISTENA","CHRISTEEN","CHARISE","CATERINA","CARLEY","CANDYCE","ARLENA","AMMIE","YANG","WILLETTE","VANITA","TUYET","TINY","SYREETA","SILVA","SCOTT","RONALD","PENNEY","NYLA","MICHAL","MAURICE","MARYAM","MARYA","MAGEN","LUDIE","LOMA","LIVIA","LANELL","KIMBERLIE","JULEE","DONETTA","DIEDRA","DENISHA","DEANE","DAWNE","CLARINE","CHERRYL","BRONWYN","BRANDON","ALLA","VALERY","TONDA","SUEANN","SORAYA","SHOSHANA","SHELA","SHARLEEN","SHANELLE","NERISSA","MICHEAL","MERIDITH","MELLIE","MAYE","MAPLE","MAGARET","LUIS","LILI","LEONILA","LEONIE","LEEANNA","LAVONIA","LAVERA","KRISTEL","KATHEY","KATHE","JUSTIN","JULIAN","JIMMY","JANN","ILDA","HILDRED","HILDEGARDE","GENIA","FUMIKO","EVELIN","ERMELINDA","ELLY","DUNG","DOLORIS","DIONNA","DANAE","BERNEICE","ANNICE","ALIX","VERENA","VERDIE","TRISTAN","SHAWNNA","SHAWANA","SHAUNNA","ROZELLA","RANDEE","RANAE","MILAGRO","LYNELL","LUISE","LOUIE","LOIDA","LISBETH","KARLEEN","JUNITA","JONA","ISIS","HYACINTH","HEDY","GWENN","ETHELENE","ERLINE","EDWARD","DONYA","DOMONIQUE","DELICIA","DANNETTE","CICELY","BRANDA","BLYTHE","BETHANN","ASHLYN","ANNALEE","ALLINE","YUKO","VELLA","TRANG","TOWANDA","TESHA","SHERLYN","NARCISA","MIGUELINA","MERI","MAYBELL","MARLANA","MARGUERITA","MADLYN","LUNA","LORY","LORIANN","LIBERTY","LEONORE","LEIGHANN","LAURICE","LATESHA","LARONDA","KATRICE","KASIE","KARL","KALEY","JADWIGA","GLENNIE","GEARLDINE","FRANCINA","EPIFANIA","DYAN","DORIE","DIEDRE","DENESE","DEMETRICE","DELENA","DARBY","CRISTIE","CLEORA","CATARINA","CARISA","BERNIE","BARBERA","ALMETA","TRULA","TEREASA","SOLANGE","SHEILAH","SHAVONNE","SANORA","ROCHELL","MATHILDE","MARGARETA","MAIA","LYNSEY","LAWANNA","LAUNA","KENA","KEENA","KATIA","JAMEY","GLYNDA","GAYLENE","ELVINA","ELANOR","DANUTA","DANIKA","CRISTEN","CORDIE","COLETTA","CLARITA","CARMON","BRYNN","AZUCENA","AUNDREA","ANGELE","YI","WALTER","VERLIE","VERLENE","TAMESHA","SILVANA","SEBRINA","SAMIRA","REDA","RAYLENE","PENNI","PANDORA","NORAH","NOMA","MIREILLE","MELISSIA","MARYALICE","LARAINE","KIMBERY","KARYL","KARINE","KAM","JOLANDA","JOHANA","JESUSA","JALEESA","JAE","JACQUELYNE","IRISH","ILUMINADA","HILARIA","HANH","GENNIE","FRANCIE","FLORETTA","EXIE","EDDA","DREMA","DELPHA","BEV","BARBAR","ASSUNTA","ARDELL","ANNALISA","ALISIA","YUKIKO","YOLANDO","WONDA","WEI","WALTRAUD","VETA","TEQUILA","TEMEKA","TAMEIKA","SHIRLEEN","SHENITA","PIEDAD","OZELLA","MIRTHA","MARILU","KIMIKO","JULIANE","JENICE","JEN","JANAY","JACQUILINE","HILDE","FE","FAE","EVAN","EUGENE","ELOIS","ECHO","DEVORAH","CHAU","BRINDA","BETSEY","ARMINDA","ARACELIS","APRYL","ANNETT","ALISHIA","VEOLA","USHA","TOSHIKO","THEOLA","TASHIA","TALITHA","SHERY","RUDY","RENETTA","REIKO","RASHEEDA","OMEGA","OBDULIA","MIKA","MELAINE","MEGGAN","MARTIN","MARLEN","MARGET","MARCELINE","MANA","MAGDALEN","LIBRADA","LEZLIE","LEXIE","LATASHIA","LASANDRA","KELLE","ISIDRA","ISA","INOCENCIA","GWYN","FRANCOISE","ERMINIA","ERINN","DIMPLE","DEVORA","CRISELDA","ARMANDA","ARIE","ARIANE","ANGELO","ANGELENA","ALLEN","ALIZA","ADRIENE","ADALINE","XOCHITL","TWANNA","TRAN","TOMIKO","TAMISHA","TAISHA","SUSY","SIU","RUTHA","ROXY","RHONA","RAYMOND","OTHA","NORIKO","NATASHIA","MERRIE","MELVIN","MARINDA","MARIKO","MARGERT","LORIS","LIZZETTE","LEISHA","KAILA","KA","JOANNIE","JERRICA","JENE","JANNET","JANEE","JACINDA","HERTA","ELENORE","DORETTA","DELAINE","DANIELL","CLAUDIE","CHINA","BRITTA","APOLONIA","AMBERLY","ALEASE","YURI","YUK","WEN","WANETA","UTE","TOMI","SHARRI","SANDIE","ROSELLE","REYNALDA","RAGUEL","PHYLICIA","PATRIA","OLIMPIA","ODELIA","MITZIE","MITCHELL","MISS","MINDA","MIGNON","MICA","MENDY","MARIVEL","MAILE","LYNETTA","LAVETTE","LAURYN","LATRISHA","LAKIESHA","KIERSTEN","KARY","JOSPHINE","JOLYN","JETTA","JANISE","JACQUIE","IVELISSE","GLYNIS","GIANNA","GAYNELLE","EMERALD","DEMETRIUS","DANYELL","DANILLE","DACIA","CORALEE","CHER","CEOLA","BRETT","BELL","ARIANNE","ALESHIA","YUNG","WILLIEMAE","TROY","TRINH","THORA","TAI","SVETLANA","SHERIKA","SHEMEKA","SHAUNDA","ROSELINE","RICKI","MELDA","MALLIE","LAVONNA","LATINA","LARRY","LAQUANDA","LALA","LACHELLE","KLARA","KANDIS","JOHNA","JEANMARIE","JAYE","HANG","GRAYCE","GERTUDE","EMERITA","EBONIE","CLORINDA","CHING","CHERY","CAROLA","BREANN","BLOSSOM","BERNARDINE","BECKI","ARLETHA","ARGELIA","ARA","ALITA","YULANDA","YON","YESSENIA","TOBI","TASIA","SYLVIE","SHIRL","SHIRELY","SHERIDAN","SHELLA","SHANTELLE","SACHA","ROYCE","REBECKA","REAGAN","PROVIDENCIA","PAULENE","MISHA","MIKI","MARLINE","MARICA","LORITA","LATOYIA","LASONYA","KERSTIN","KENDA","KEITHA","KATHRIN","JAYMIE","JACK","GRICELDA","GINETTE","ERYN","ELINA","ELFRIEDA","DANYEL","CHEREE","CHANELLE","BARRIE","AVERY","AURORE","ANNAMARIA","ALLEEN","AILENE","AIDE","YASMINE","VASHTI","VALENTINE","TREASA","TORY","TIFFANEY","SHERYLL","SHARIE","SHANAE","SAU","RAISA","PA","NEDA","MITSUKO","MIRELLA","MILDA","MARYANNA","MARAGRET","MABELLE","LUETTA","LORINA","LETISHA","LATARSHA","LANELLE","LAJUANA","KRISSY","KARLY","KARENA","JON","JESSIKA","JERICA","JEANELLE","JANUARY","JALISA","JACELYN","IZOLA","IVEY","GREGORY","EUNA","ETHA","DREW","DOMITILA","DOMINICA","DAINA","CREOLA","CARLI","CAMIE","BUNNY","BRITTNY","ASHANTI","ANISHA","ALEEN","ADAH","YASUKO","WINTER","VIKI","VALRIE","TONA","TINISHA","THI","TERISA","TATUM","TANEKA","SIMONNE","SHALANDA","SERITA","RESSIE","REFUGIA","PAZ","OLENE","NA","MERRILL","MARGHERITA","MANDIE","MAN","MAIRE","LYNDIA","LUCI","LORRIANE","LORETA","LEONIA","LAVONA","LASHAWNDA","LAKIA","KYOKO","KRYSTINA","KRYSTEN","KENIA","KELSI","JUDE","JEANICE","ISOBEL","GEORGIANN","GENNY","FELICIDAD","EILENE","DEON","DELOISE","DEEDEE","DANNIE","CONCEPTION","CLORA","CHERILYN","CHANG","CALANDRA","BERRY","ARMANDINA","ANISA","ULA","TIMOTHY","TIERA","THERESSA","STEPHANIA","SIMA","SHYLA","SHONTA","SHERA","SHAQUITA","SHALA","SAMMY","ROSSANA","NOHEMI","NERY","MORIAH","MELITA","MELIDA","MELANI","MARYLYNN","MARISHA","MARIETTE","MALORIE","MADELENE","LUDIVINA","LORIA","LORETTE","LORALEE","LIANNE","LEON","LAVENIA","LAURINDA","LASHON","KIT","KIMI","KEILA","KATELYNN","KAI","JONE","JOANE","JI","JAYNA","JANELLA","JA","HUE","HERTHA","FRANCENE","ELINORE","DESPINA","DELSIE","DEEDRA","CLEMENCIA","CARRY","CAROLIN","CARLOS","BULAH","BRITTANIE","BOK","BLONDELL","BIBI","BEAULAH","BEATA","ANNITA","AGRIPINA","VIRGEN","VALENE","UN","TWANDA","TOMMYE","TOI","TARRA","TARI","TAMMERA","SHAKIA","SADYE","RUTHANNE","ROCHEL","RIVKA","PURA","NENITA","NATISHA","MING","MERRILEE","MELODEE","MARVIS","LUCILLA","LEENA","LAVETA","LARITA","LANIE","KEREN","ILEEN","GEORGEANN","GENNA","GENESIS","FRIDA","EWA","EUFEMIA","EMELY","ELA","EDYTH","DEONNA","DEADRA","DARLENA","CHANELL","CHAN","CATHERN","CASSONDRA","CASSAUNDRA","BERNARDA","BERNA","ARLINDA","ANAMARIA","ALBERT","WESLEY","VERTIE","VALERI","TORRI","TATYANA","STASIA","SHERISE","SHERILL","SEASON","SCOTTIE","SANDA","RUTHE","ROSY","ROBERTO","ROBBI","RANEE","QUYEN","PEARLY","PALMIRA","ONITA","NISHA","NIESHA","NIDA","NEVADA","NAM","MERLYN","MAYOLA","MARYLOUISE","MARYLAND","MARX","MARTH","MARGENE","MADELAINE","LONDA","LEONTINE","LEOMA","LEIA","LAWRENCE","LAURALEE","LANORA","LAKITA","KIYOKO","KETURAH","KATELIN","KAREEN","JONIE","JOHNETTE","JENEE","JEANETT","IZETTA","HIEDI","HEIKE","HASSIE","HAROLD","GIUSEPPINA","GEORGANN","FIDELA","FERNANDE","ELWANDA","ELLAMAE","ELIZ","DUSTI","DOTTY","CYNDY","CORALIE","CELESTA","ARGENTINA","ALVERTA","XENIA","WAVA","VANETTA","TORRIE","TASHINA","TANDY","TAMBRA","TAMA","STEPANIE","SHILA","SHAUNTA","SHARAN","SHANIQUA","SHAE","SETSUKO","SERAFINA","SANDEE","ROSAMARIA","PRISCILA","OLINDA","NADENE","MUOI","MICHELINA","MERCEDEZ","MARYROSE","MARIN","MARCENE","MAO","MAGALI","MAFALDA","LOGAN","LINN","LANNIE","KAYCE","KAROLINE","KAMILAH","KAMALA","JUSTA","JOLINE","JENNINE","JACQUETTA","IRAIDA","GERALD","GEORGEANNA","FRANCHESCA","FAIRY","EMELINE","ELANE","EHTEL","EARLIE","DULCIE","DALENE","CRIS","CLASSIE","CHERE","CHARIS","CAROYLN","CARMINA","CARITA","BRIAN","BETHANIE","AYAKO","ARICA","AN","ALYSA","ALESSANDRA","AKILAH","ADRIEN","ZETTA","YOULANDA","YELENA","YAHAIRA","XUAN","WENDOLYN","VICTOR","TIJUANA","TERRELL","TERINA","TERESIA","SUZI","SUNDAY","SHERELL","SHAVONDA","SHAUNTE","SHARDA","SHAKITA","SENA","RYANN","RUBI","RIVA","REGINIA","REA","RACHAL","PARTHENIA","PAMULA","MONNIE","MONET","MICHAELE","MELIA","MARINE","MALKA","MAISHA","LISANDRA","LEO","LEKISHA","LEAN","LAURENCE","LAKENDRA","KRYSTIN","KORTNEY","KIZZIE","KITTIE","KERA","KENDAL","KEMBERLY","KANISHA","JULENE","JULE","JOSHUA","JOHANNE","JEFFREY","JAMEE","HAN","HALLEY","GIDGET","GALINA","FREDRICKA","FLETA","FATIMAH","EUSEBIA","ELZA","ELEONORE","DORTHEY","DORIA","DONELLA","DINORAH","DELORSE","CLARETHA","CHRISTINIA","CHARLYN","BONG","BELKIS","AZZIE","ANDERA","AIKO","ADENA","YER","YAJAIRA","WAN","VANIA","ULRIKE","TOSHIA","TIFANY","STEFANY","SHIZUE","SHENIKA","SHAWANNA","SHAROLYN","SHARILYN","SHAQUANA","SHANTAY","SEE","ROZANNE","ROSELEE","RICKIE","REMONA","REANNA","RAELENE","QUINN","PHUNG","PETRONILA","NATACHA","NANCEY","MYRL","MIYOKO","MIESHA","MERIDETH","MARVELLA","MARQUITTA","MARHTA","MARCHELLE","LIZETH","LIBBIE","LAHOMA","LADAWN","KINA","KATHELEEN","KATHARYN","KARISA","KALEIGH","JUNIE","JULIEANN","JOHNSIE","JANEAN","JAIMEE","JACKQUELINE","HISAKO","HERMA","HELAINE","GWYNETH","GLENN","GITA","EUSTOLIA","EMELINA","ELIN","EDRIS","DONNETTE","DONNETTA","DIERDRE","DENAE","DARCEL","CLAUDE","CLARISA","CINDERELLA","CHIA","CHARLESETTA","CHARITA","CELSA","CASSY","CASSI","CARLEE","BRUNA","BRITTANEY","BRANDE","BILLI","BAO","ANTONETTA","ANGLA","ANGELYN","ANALISA","ALANE","WENONA","WENDIE","VERONIQUE","VANNESA","TOBIE","TEMPIE","SUMIKO","SULEMA","SPARKLE","SOMER","SHEBA","SHAYNE","SHARICE","SHANEL","SHALON","SAGE","ROY","ROSIO","ROSELIA","RENAY","REMA","REENA","PORSCHE","PING","PEG","OZIE","ORETHA","ORALEE","ODA","NU","NGAN","NAKESHA","MILLY","MARYBELLE","MARLIN","MARIS","MARGRETT","MARAGARET","MANIE","LURLENE","LILLIA","LIESELOTTE","LAVELLE","LASHAUNDA","LAKEESHA","KEITH","KAYCEE","KALYN","JOYA","JOETTE","JENAE","JANIECE","ILLA","GRISEL","GLAYDS","GENEVIE","GALA","FREDDA","FRED","ELMER","ELEONOR","DEBERA","DEANDREA","DAN","CORRINNE","CORDIA","CONTESSA","COLENE","CLEOTILDE","CHARLOTT","CHANTAY","CECILLE","BEATRIS","AZALEE","ARLEAN","ARDATH","ANJELICA","ANJA","ALFREDIA","ALEISHA","ADAM","ZADA","YUONNE","XIAO","WILLODEAN","WHITLEY","VENNIE","VANNA","TYISHA","TOVA","TORIE","TONISHA","TILDA","TIEN","TEMPLE","SIRENA","SHERRIL","SHANTI","SHAN","SENAIDA","SAMELLA","ROBBYN","RENDA","REITA","PHEBE","PAULITA","NOBUKO","NGUYET","NEOMI","MOON","MIKAELA","MELANIA","MAXIMINA","MARG","MAISIE","LYNNA","LILLI","LAYNE","LASHAUN","LAKENYA","LAEL","KIRSTIE","KATHLINE","KASHA","KARLYN","KARIMA","JOVAN","JOSEFINE","JENNELL","JACQUI","JACKELYN","HYO","HIEN","GRAZYNA","FLORRIE","FLORIA","ELEONORA","DWANA","DORLA","DONG","DELMY","DEJA","DEDE","DANN","CRYSTA","CLELIA","CLARIS","CLARENCE","CHIEKO","CHERLYN","CHERELLE","CHARMAIN","CHARA","CAMMY","BEE","ARNETTE","ARDELLE","ANNIKA","AMIEE","AMEE","ALLENA","YVONE","YUKI","YOSHIE","YEVETTE","YAEL","WILLETTA","VONCILE","VENETTA","TULA","TONETTE","TIMIKA","TEMIKA","TELMA","TEISHA","TAREN","TA","STACEE","SHIN","SHAWNTA","SATURNINA","RICARDA","POK","PASTY","ONIE","NUBIA","MORA","MIKE","MARIELLE","MARIELLA","MARIANELA","MARDELL","MANY","LUANNA","LOISE","LISABETH","LINDSY","LILLIANA","LILLIAM","LELAH","LEIGHA","LEANORA","LANG","KRISTEEN","KHALILAH","KEELEY","KANDRA","JUNKO","JOAQUINA","JERLENE","JANI","JAMIKA","JAME","HSIU","HERMILA","GOLDEN","GENEVIVE","EVIA","EUGENA","EMMALINE","ELFREDA","ELENE","DONETTE","DELCIE","DEEANNA","DARCEY","CUC","CLARINDA","CIRA","CHAE","CELINDA","CATHERYN","CATHERIN","CASIMIRA","CARMELIA","CAMELLIA","BREANA","BOBETTE","BERNARDINA","BEBE","BASILIA","ARLYNE","AMAL","ALAYNA","ZONIA","ZENIA","YURIKO","YAEKO","WYNELL","WILLOW","WILLENA","VERNIA","TU","TRAVIS","TORA","TERRILYN","TERICA","TENESHA","TAWNA","TAJUANA","TAINA","STEPHNIE","SONA","SOL","SINA","SHONDRA","SHIZUKO","SHERLENE","SHERICE","SHARIKA","ROSSIE","ROSENA","RORY","RIMA","RIA","RHEBA","RENNA","PETER","NATALYA","NANCEE","MELODI","MEDA","MAXIMA","MATHA","MARKETTA","MARICRUZ","MARCELENE","MALVINA","LUBA","LOUETTA","LEIDA","LECIA","LAURAN","LASHAWNA","LAINE","KHADIJAH","KATERINE","KASI","KALLIE","JULIETTA","JESUSITA","JESTINE","JESSIA","JEREMY","JEFFIE","JANYCE","ISADORA","GEORGIANNE","FIDELIA","EVITA","EURA","EULAH","ESTEFANA","ELSY","ELIZABET","ELADIA","DODIE","DION","DIA","DENISSE","DELORAS","DELILA","DAYSI","DAKOTA","CURTIS","CRYSTLE","CONCHA","COLBY","CLARETTA","CHU","CHRISTIA","CHARLSIE","CHARLENA","CARYLON","BETTYANN","ASLEY","ASHLEA","AMIRA","AI","AGUEDA","AGNUS","YUETTE","VINITA","VICTORINA","TYNISHA","TREENA","TOCCARA","TISH","THOMASENA","TEGAN","SOILA","SHILOH","SHENNA","SHARMAINE","SHANTAE","SHANDI","SEPTEMBER","SARAN","SARAI","SANA","SAMUEL","SALLEY","ROSETTE","ROLANDE","REGINE","OTELIA","OSCAR","OLEVIA","NICHOLLE","NECOLE","NAIDA","MYRTA","MYESHA","MITSUE","MINTA","MERTIE","MARGY","MAHALIA","MADALENE","LOVE","LOURA","LOREAN","LEWIS","LESHA","LEONIDA","LENITA","LAVONE","LASHELL","LASHANDRA","LAMONICA","KIMBRA","KATHERINA","KARRY","KANESHA","JULIO","JONG","JENEVA","JAQUELYN","HWA","GILMA","GHISLAINE","GERTRUDIS","FRANSISCA","FERMINA","ETTIE","ETSUKO","ELLIS","ELLAN","ELIDIA","EDRA","DORETHEA","DOREATHA","DENYSE","DENNY","DEETTA","DAINE","CYRSTAL","CORRIN","CAYLA","CARLITA","CAMILA","BURMA","BULA","BUENA","BLAKE","BARABARA","AVRIL","AUSTIN","ALAINE","ZANA","WILHEMINA","WANETTA","VIRGIL","VI","VERONIKA","VERNON","VERLINE","VASILIKI","TONITA","TISA","TEOFILA","TAYNA","TAUNYA","TANDRA","TAKAKO","SUNNI","SUANNE","SIXTA","SHARELL","SEEMA","RUSSELL","ROSENDA","ROBENA","RAYMONDE","PEI","PAMILA","OZELL","NEIDA","NEELY","MISTIE","MICHA","MERISSA","MAURITA","MARYLN","MARYETTA","MARSHALL","MARCELL","MALENA","MAKEDA","MADDIE","LOVETTA","LOURIE","LORRINE","LORILEE","LESTER","LAURENA","LASHAY","LARRAINE","LAREE","LACRESHA","KRISTLE","KRISHNA","KEVA","KEIRA","KAROLE","JOIE","JINNY","JEANNETTA","JAMA","HEIDY","GILBERTE","GEMA","FAVIOLA","EVELYNN","ENDA","ELLI","ELLENA","DIVINA","DAGNY","COLLENE","CODI","CINDIE","CHASSIDY","CHASIDY","CATRICE","CATHERINA","CASSEY","CAROLL","CARLENA","CANDRA","CALISTA","BRYANNA","BRITTENY","BEULA","BARI","AUDRIE","AUDRIA","ARDELIA","ANNELLE","ANGILA","ALONA","ALLYN","DOUGLAS","ROGER","JONATHAN","RALPH","NICHOLAS","BENJAMIN","BRUCE","HARRY","WAYNE","STEVE","HOWARD","ERNEST","PHILLIP","TODD","CRAIG","ALAN","PHILIP","EARL","DANNY","BRYAN","STANLEY","LEONARD","NATHAN","MANUEL","RODNEY","MARVIN","VINCENT","JEFFERY","JEFF","CHAD","JACOB","ALFRED","BRADLEY","HERBERT","FREDERICK","EDWIN","DON","RICKY","RANDALL","BARRY","BERNARD","LEROY","MARCUS","THEODORE","CLIFFORD","MIGUEL","JIM","TOM","CALVIN","BILL","LLOYD","DEREK","WARREN","DARRELL","JEROME","FLOYD","ALVIN","TIM","GORDON","GREG","JORGE","DUSTIN","PEDRO","DERRICK","ZACHARY","HERMAN","GLEN","HECTOR","RICARDO","RICK","BRENT","RAMON","GILBERT","MARC","REGINALD","RUBEN","NATHANIEL","RAFAEL","EDGAR","MILTON","RAUL","BEN","CHESTER","DUANE","FRANKLIN","BRAD","RON","ROLAND","ARNOLD","HARVEY","JARED","ERIK","DARRYL","NEIL","JAVIER","FERNANDO","CLINTON","TED","MATHEW","TYRONE","DARREN","LANCE","KURT","ALLAN","NELSON","GUY","CLAYTON","HUGH","MAX","DWAYNE","DWIGHT","ARMANDO","FELIX","EVERETT","IAN","WALLACE","KEN","BOB","ALFREDO","ALBERTO","DAVE","IVAN","BYRON","ISAAC","MORRIS","CLIFTON","WILLARD","ROSS","ANDY","SALVADOR","KIRK","SERGIO","SETH","KENT","TERRANCE","EDUARDO","TERRENCE","ENRIQUE","WADE","STUART","FREDRICK","ARTURO","ALEJANDRO","NICK","LUTHER","WENDELL","JEREMIAH","JULIUS","OTIS","TREVOR","OLIVER","LUKE","HOMER","GERARD","DOUG","KENNY","HUBERT","LYLE","MATT","ALFONSO","ORLANDO","REX","CARLTON","ERNESTO","NEAL","PABLO","LORENZO","OMAR","WILBUR","GRANT","HORACE","RODERICK","ABRAHAM","WILLIS","RICKEY","ANDRES","CESAR","JOHNATHAN","MALCOLM","RUDOLPH","DAMON","KELVIN","PRESTON","ALTON","ARCHIE","MARCO","WM","PETE","RANDOLPH","GARRY","GEOFFREY","JONATHON","FELIPE","GERARDO","ED","DOMINIC","DELBERT","COLIN","GUILLERMO","EARNEST","LUCAS","BENNY","SPENCER","RODOLFO","MYRON","EDMUND","GARRETT","SALVATORE","CEDRIC","LOWELL","GREGG","SHERMAN","WILSON","SYLVESTER","ROOSEVELT","ISRAEL","JERMAINE","FORREST","WILBERT","LELAND","SIMON","CLARK","IRVING","BRYANT","OWEN","RUFUS","WOODROW","KRISTOPHER","MACK","LEVI","MARCOS","GUSTAVO","JAKE","LIONEL","GILBERTO","CLINT","NICOLAS","ISMAEL","ORVILLE","ERVIN","DEWEY","AL","WILFRED","JOSH","HUGO","IGNACIO","CALEB","TOMAS","SHELDON","ERICK","STEWART","DOYLE","DARREL","ROGELIO","TERENCE","SANTIAGO","ALONZO","ELIAS","BERT","ELBERT","RAMIRO","CONRAD","NOAH","GRADY","PHIL","CORNELIUS","LAMAR","ROLANDO","CLAY","PERCY","DEXTER","BRADFORD","DARIN","AMOS","MOSES","IRVIN","SAUL","ROMAN","RANDAL","TIMMY","DARRIN","WINSTON","BRENDAN","ABEL","DOMINICK","BOYD","EMILIO","ELIJAH","DOMINGO","EMMETT","MARLON","EMANUEL","JERALD","EDMOND","EMIL","DEWAYNE","WILL","OTTO","TEDDY","REYNALDO","BRET","JESS","TRENT","HUMBERTO","EMMANUEL","STEPHAN","VICENTE","LAMONT","GARLAND","MILES","EFRAIN","HEATH","RODGER","HARLEY","ETHAN","ELDON","ROCKY","PIERRE","JUNIOR","FREDDY","ELI","BRYCE","ANTOINE","STERLING","CHASE","GROVER","ELTON","CLEVELAND","DYLAN","CHUCK","DAMIAN","REUBEN","STAN","AUGUST","LEONARDO","JASPER","RUSSEL","ERWIN","BENITO","HANS","MONTE","BLAINE","ERNIE","CURT","QUENTIN","AGUSTIN","MURRAY","JAMAL","ADOLFO","HARRISON","TYSON","BURTON","BRADY","ELLIOTT","WILFREDO","BART","JARROD","VANCE","DENIS","DAMIEN","JOAQUIN","HARLAN","DESMOND","ELLIOT","DARWIN","GREGORIO","BUDDY","XAVIER","KERMIT","ROSCOE","ESTEBAN","ANTON","SOLOMON","SCOTTY","NORBERT","ELVIN","WILLIAMS","NOLAN","ROD","QUINTON","HAL","BRAIN","ROB","ELWOOD","KENDRICK","DARIUS","MOISES","FIDEL","THADDEUS","CLIFF","MARCEL","JACKSON","RAPHAEL","BRYON","ARMAND","ALVARO","JEFFRY","DANE","JOESPH","THURMAN","NED","RUSTY","MONTY","FABIAN","REGGIE","MASON","GRAHAM","ISAIAH","VAUGHN","GUS","LOYD","DIEGO","ADOLPH","NORRIS","MILLARD","ROCCO","GONZALO","DERICK","RODRIGO","WILEY","RIGOBERTO","ALPHONSO","TY","NOE","VERN","REED","JEFFERSON","ELVIS","BERNARDO","MAURICIO","HIRAM","DONOVAN","BASIL","RILEY","NICKOLAS","MAYNARD","SCOT","VINCE","QUINCY","EDDY","SEBASTIAN","FEDERICO","ULYSSES","HERIBERTO","DONNELL","COLE","DAVIS","GAVIN","EMERY","WARD","ROMEO","JAYSON","DANTE","CLEMENT","COY","MAXWELL","JARVIS","BRUNO","ISSAC","DUDLEY","BROCK","SANFORD","CARMELO","BARNEY","NESTOR","STEFAN","DONNY","ART","LINWOOD","BEAU","WELDON","GALEN","ISIDRO","TRUMAN","DELMAR","JOHNATHON","SILAS","FREDERIC","DICK","IRWIN","MERLIN","CHARLEY","MARCELINO","HARRIS","CARLO","TRENTON","KURTIS","HUNTER","AURELIO","WINFRED","VITO","COLLIN","DENVER","CARTER","LEONEL","EMORY","PASQUALE","MOHAMMAD","MARIANO","DANIAL","LANDON","DIRK","BRANDEN","ADAN","BUFORD","GERMAN","WILMER","EMERSON","ZACHERY","FLETCHER","JACQUES","ERROL","DALTON","MONROE","JOSUE","EDWARDO","BOOKER","WILFORD","SONNY","SHELTON","CARSON","THERON","RAYMUNDO","DAREN","HOUSTON","ROBBY","LINCOLN","GENARO","BENNETT","OCTAVIO","CORNELL","HUNG","ARRON","ANTONY","HERSCHEL","GIOVANNI","GARTH","CYRUS","CYRIL","RONNY","LON","FREEMAN","DUNCAN","KENNITH","CARMINE","ERICH","CHADWICK","WILBURN","RUSS","REID","MYLES","ANDERSON","MORTON","JONAS","FOREST","MITCHEL","MERVIN","ZANE","RICH","JAMEL","LAZARO","ALPHONSE","RANDELL","MAJOR","JARRETT","BROOKS","ABDUL","LUCIANO","SEYMOUR","EUGENIO","MOHAMMED","VALENTIN","CHANCE","ARNULFO","LUCIEN","FERDINAND","THAD","EZRA","ALDO","RUBIN","ROYAL","MITCH","EARLE","ABE","WYATT","MARQUIS","LANNY","KAREEM","JAMAR","BORIS","ISIAH","EMILE","ELMO","ARON","LEOPOLDO","EVERETTE","JOSEF","ELOY","RODRICK","REINALDO","LUCIO","JERROD","WESTON","HERSHEL","BARTON","PARKER","LEMUEL","BURT","JULES","GIL","ELISEO","AHMAD","NIGEL","EFREN","ANTWAN","ALDEN","MARGARITO","COLEMAN","DINO","OSVALDO","LES","DEANDRE","NORMAND","KIETH","TREY","NORBERTO","NAPOLEON","JEROLD","FRITZ","ROSENDO","MILFORD","CHRISTOPER","ALFONZO","LYMAN","JOSIAH","BRANT","WILTON","RICO","JAMAAL","DEWITT","BRENTON","OLIN","FOSTER","FAUSTINO","CLAUDIO","JUDSON","GINO","EDGARDO","ALEC","TANNER","JARRED","DONN","TAD","PRINCE","PORFIRIO","ODIS","LENARD","CHAUNCEY","TOD","MEL","MARCELO","KORY","AUGUSTUS","KEVEN","HILARIO","BUD","SAL","ORVAL","MAURO","ZACHARIAH","OLEN","ANIBAL","MILO","JED","DILLON","AMADO","NEWTON","LENNY","RICHIE","HORACIO","BRICE","MOHAMED","DELMER","DARIO","REYES","MAC","JONAH","JERROLD","ROBT","HANK","RUPERT","ROLLAND","KENTON","DAMION","ANTONE","WALDO","FREDRIC","BRADLY","KIP","BURL","WALKER","TYREE","JEFFEREY","AHMED","WILLY","STANFORD","OREN","NOBLE","MOSHE","MIKEL","ENOCH","BRENDON","QUINTIN","JAMISON","FLORENCIO","DARRICK","TOBIAS","HASSAN","GIUSEPPE","DEMARCUS","CLETUS","TYRELL","LYNDON","KEENAN","WERNER","GERALDO","COLUMBUS","CHET","BERTRAM","MARKUS","HUEY","HILTON","DWAIN","DONTE","TYRON","OMER","ISAIAS","HIPOLITO","FERMIN","ADALBERTO","BO","BARRETT","TEODORO","MCKINLEY","MAXIMO","GARFIELD","RALEIGH","LAWERENCE","ABRAM","RASHAD","KING","EMMITT","DARON","SAMUAL","MIQUEL","EUSEBIO","DOMENIC","DARRON","BUSTER","WILBER","RENATO","JC","HOYT","HAYWOOD","EZEKIEL","CHAS","FLORENTINO","ELROY","CLEMENTE","ARDEN","NEVILLE","EDISON","DESHAWN","NATHANIAL","JORDON","DANILO","CLAUD","SHERWOOD","RAYMON","RAYFORD","CRISTOBAL","AMBROSE","TITUS","HYMAN","FELTON","EZEQUIEL","ERASMO","STANTON","LONNY","LEN","IKE","MILAN","LINO","JAROD","HERB","ANDREAS","WALTON","RHETT","PALMER","DOUGLASS","CORDELL","OSWALDO","ELLSWORTH","VIRGILIO","TONEY","NATHANAEL","DEL","BENEDICT","MOSE","JOHNSON","ISREAL","GARRET","FAUSTO","ASA","ARLEN","ZACK","WARNER","MODESTO","FRANCESCO","MANUAL","GAYLORD","GASTON","FILIBERTO","DEANGELO","MICHALE","GRANVILLE","WES","MALIK","ZACKARY","TUAN","ELDRIDGE","CRISTOPHER","CORTEZ","ANTIONE","MALCOM","LONG","KOREY","JOSPEH","COLTON","WAYLON","VON","HOSEA","SHAD","SANTO","RUDOLF","ROLF","REY","RENALDO","MARCELLUS","LUCIUS","KRISTOFER","BOYCE","BENTON","HAYDEN","HARLAND","ARNOLDO","RUEBEN","LEANDRO","KRAIG","JERRELL","JEROMY","HOBERT","CEDRICK","ARLIE","WINFORD","WALLY","LUIGI","KENETH","JACINTO","GRAIG","FRANKLYN","EDMUNDO","SID","PORTER","LEIF","JERAMY","BUCK","WILLIAN","VINCENZO","SHON","LYNWOOD","JERE","HAI","ELDEN","DORSEY","DARELL","BRODERICK","ALONSO"`

# File go/primes.go

`-package primes`
`-`
`-func integers() chan uint64 {`
`-	out := make(chan uint64)`
`-`
`-	go func() {`
`-		var i uint64 = 2`
`-		for {`
`-			out <- i`
`-			i++`
`-		}`
`-	}()`
`-`
`-	return out`
`-}`
`-`
`-func filter(prime uint64, in chan uint64) chan uint64 {`
`-	out := make(chan uint64)`
`-`
`-	go func() {`
`-		for i := range in {`
`-			if (i % prime) != 0 {`
`-				out <- i`
`-			}`
`-		}`
`-	}()`
`-`
`-	return out`
`-}`
`-`
`-func Primes() chan uint64 {`
`-	out := make(chan uint64)`
`-	in := integers()`
`-	go func() {`
`-		for {`
`-			i := <-in`
`-			out <- i`
`-			in = filter(i, in)`
`-		}`
`-	}()`
`-`
`-	return out`
`-}`
`-`
`-var primes []uint64 = nil`
`-var pgen = Primes()`
`-`
`-func fillPrimes(n uint64) {`
`-	for {`
`-		if len(primes) > 0 && primes[len(primes)-1] > n {`
`-			return`
`-		}`
`-		p := <-pgen`
`-		primes = append(primes, p)`
`-	}`
`-}`
`-`
`-func search(needle uint64, haystack []uint64) bool {`
`-	for _, v := range haystack {`
`-		if needle == v {`
`-			return true`
`-		}`
`-	}`
`-`
`-	return false`
`-}`
`-`
`-func IsPrime(n uint64) bool {`
`-	fillPrimes(n)`
`-	return search(n, primes)`
`-}`

# File go/src/euler/1.go

`+/*`
`+If we list all the natural numbers below 10 that are multiples of 3 or 5, we get`
`+3, 5, 6 and 9. The sum of these multiples is 23.`
`+`
`+Find the sum of all the multiples of 3 or 5 below 1000.`
`+`
`+Answer: 233168`
`+*/`
`+package main`
`+`
`+import "fmt"`
`+`
`+func main() {`
`+	sum := 0`
`+	for i := 1; i < 1000; i++ {`
`+		if (i%5 == 0) || (i%3 == 0) {`
`+			sum += i`
`+		}`
`+	}`
`+`
`+	fmt.Println(sum)`
`+}`

# File go/src/euler/10.go

`+/*`
`+The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.`
`+`
`+Find the sum of all the primes below two million.`
`+`
`+Answer: 142913828922`
`+*/`
`+`
`+package main`
`+`
`+import (`
`+	"fmt"`
`+	"math/big"`
`+)`
`+`
`+func main() {`
`+	sum := int64(0)`
`+	for i := int64(0); i < 2000000; i++ {`
`+		if big.ProbablyPrime(big.NewInt(i), 10) {`
`+			sum += i`
`+		}`
`+	}`
`+	fmt.Println(sum)`
`+}`

# File go/src/euler/11.go

`+/*`
`+In the 20×20 grid below, four numbers along a diagonal line have been marked in red.`
`+`
`+08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08`
`+49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00`
`+81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65`
`+52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91`
`+22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80`
`+24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50`
`+32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70`
`+67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21`
`+24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72`
`+21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95`
`+78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92`
`+16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57`
`+86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58`
`+19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40`
`+04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66`
`+88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69`
`+04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36`
`+20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16`
`+20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54`
`+01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48`
`+`
`+The product of these numbers is 26 × 63 × 78 × 14 = 1788696.`
`+`
`+What is the greatest product of four adjacent numbers in any direction (up,`
`+down, left, right, or diagonally) in the 20×20 grid?`
`+`
`+Answer: 70600674`
`+*/`
`+`
`+package main`
`+`
`+import "fmt"`
`+`
`+var nums = [][]int{`
`+	{8, 2, 22, 97, 38, 15, 00, 40, 00, 75, 04, 05, 07, 78, 52, 12, 50, 77, 91, 8},`
`+	{49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 4, 56, 62, 0},`
`+	{81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 3, 49, 13, 36, 65},`
`+	{52, 70, 95, 23, 4, 60, 11, 42, 69, 24, 68, 56, 01, 32, 56, 71, 37, 02, 36, 91},`
`+	{22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80},`
`+	{24, 47, 32, 60, 99, 3, 45, 02, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50},`
`+	{32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70},`
`+	{67, 26, 20, 68, 2, 62, 12, 20, 95, 63, 94, 39, 63, 8, 40, 91, 66, 49, 94, 21},`
`+	{24, 55, 58, 5, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72},`
`+	{21, 36, 23, 9, 75, 0, 76, 44, 20, 45, 35, 14, 00, 61, 33, 97, 34, 31, 33, 95},`
`+	{78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 3, 80, 04, 62, 16, 14, 9, 53, 56, 92},`
`+	{16, 39, 5, 42, 96, 35, 31, 47, 55, 58, 88, 24, 00, 17, 54, 24, 36, 29, 85, 57},`
`+	{86, 56, 0, 48, 35, 71, 89, 07, 05, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58},`
`+	{19, 80, 81, 68, 5, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 04, 89, 55, 40},`
`+	{4, 52, 8, 83, 97, 35, 99, 16, 07, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66},`
`+	{88, 36, 68, 87, 57, 62, 20, 72, 3, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69},`
`+	{4, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 8, 46, 29, 32, 40, 62, 76, 36},`
`+	{20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 4, 36, 16},`
`+	{20, 73, 35, 29, 78, 31, 90, 1, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 05, 54},`
`+	{1, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 1, 89, 19, 67, 48},`
`+}`
`+`
`+func main() {`
`+	max := 0`
`+	// horizontal`
`+	for row := 0; row < 20; row++ {`
`+		for col := 0; col <= 16; col++ {`
`+			p := nums[row][col] * nums[row][col+1] * nums[row][col+2] *`
`+				nums[row][col+3]`
`+			if p > max {`
`+				max = p`
`+			}`
`+		}`
`+	}`
`+	// vertical`
`+	for row := 0; row < 16; row++ {`
`+		for col := 0; col < 20; col++ {`
`+			p := nums[row][col] * nums[row+1][col] * nums[row+2][col] *`
`+				nums[row+3][col]`
`+			if p > max {`
`+				max = p`
`+			}`
`+		}`
`+	}`
`+	// right diagonal`
`+	for row := 0; row < 16; row++ {`
`+		for col := 0; col < 16; col++ {`
`+			p := nums[row][col] * nums[row+1][col+1] * nums[row+2][col+2] *`
`+				nums[row+3][col+3]`
`+			if p > max {`
`+				max = p`
`+			}`
`+		}`
`+	}`
`+	// left diagonal`
`+	for row := 0; row < 16; row++ {`
`+		for col := 3; col < 20; col++ {`
`+			p := nums[row][col] * nums[row+1][col-1] * nums[row+2][col-2] *`
`+				nums[row+3][col-3]`
`+			if p > max {`
`+				max = p`
`+			}`
`+		}`
`+	}`
`+`
`+	fmt.Println(max)`
`+}`

# File go/src/euler/12.go

`+/*`
`+The sequence of triangle numbers is generated by adding the natural numbers. So`
`+the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten`
`+terms would be:`
`+`
`+1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...`
`+`
`+Let us list the factors of the first seven triangle numbers:`
`+`
`+     1: 1`
`+     3: 1,3`
`+     6: 1,2,3,6`
`+    10: 1,2,5,10`
`+    15: 1,3,5,15`
`+    21: 1,3,7,21`
`+    28: 1,2,4,7,14,28`
`+`
`+We can see that 28 is the first triangle number to have over five divisors.`
`+`
`+What is the value of the first triangle number to have over five hundred`
`+divisors?`
`+`
`+Answer: 76576500`
`+*/`
`+`
`+package main`
`+`
`+import "fmt"`
`+`
`+func triangles() chan uint {`
`+	out := make(chan uint)`
`+	go func() {`
`+		t, i := uint(0), uint(1)`
`+		for {`
`+			t += i`
`+			out <- t`
`+			i++`
`+		}`
`+	}()`
`+`
`+	return out`
`+}`
`+`
`+func numDivisors(n uint) uint {`
`+	d := uint(2) // 1 and the number itself`
`+	for i := uint(2); i <= n/2+1; i++ {`
`+		if n%i == 0 {`
`+			d++`
`+		}`
`+	}`
`+`
`+	return d`
`+}`
`+`
`+func worker(in chan uint, out chan uint) {`
`+	for {`
`+		t := <-in`
`+		if numDivisors(t) > 500 {`
`+			out <- t`
`+		}`
`+	}`
`+}`
`+`
`+const (`
`+	NUM_WORKERS = 1000`
`+)`
`+`
`+func main() {`
`+	out := make(chan uint)`
`+	in := triangles()`
`+	for i := 0; i < NUM_WORKERS; i++ {`
`+		go worker(in, out)`
`+	}`
`+`
`+	t := <-out`
`+	fmt.Println(t)`
`+}`

# File go/src/euler/13-digits.txt

`+37107287533902102798797998220837590246510135740250`
`+46376937677490009712648124896970078050417018260538`
`+74324986199524741059474233309513058123726617309629`
`+91942213363574161572522430563301811072406154908250`
`+23067588207539346171171980310421047513778063246676`
`+89261670696623633820136378418383684178734361726757`
`+28112879812849979408065481931592621691275889832738`
`+44274228917432520321923589422876796487670272189318`
`+47451445736001306439091167216856844588711603153276`
`+70386486105843025439939619828917593665686757934951`
`+62176457141856560629502157223196586755079324193331`
`+64906352462741904929101432445813822663347944758178`
`+92575867718337217661963751590579239728245598838407`
`+58203565325359399008402633568948830189458628227828`
`+80181199384826282014278194139940567587151170094390`
`+35398664372827112653829987240784473053190104293586`
`+86515506006295864861532075273371959191420517255829`
`+71693888707715466499115593487603532921714970056938`
`+54370070576826684624621495650076471787294438377604`
`+53282654108756828443191190634694037855217779295145`
`+36123272525000296071075082563815656710885258350721`
`+45876576172410976447339110607218265236877223636045`
`+17423706905851860660448207621209813287860733969412`
`+81142660418086830619328460811191061556940512689692`
`+51934325451728388641918047049293215058642563049483`
`+62467221648435076201727918039944693004732956340691`
`+15732444386908125794514089057706229429197107928209`
`+55037687525678773091862540744969844508330393682126`
`+18336384825330154686196124348767681297534375946515`
`+80386287592878490201521685554828717201219257766954`
`+78182833757993103614740356856449095527097864797581`
`+16726320100436897842553539920931837441497806860984`
`+48403098129077791799088218795327364475675590848030`
`+87086987551392711854517078544161852424320693150332`
`+59959406895756536782107074926966537676326235447210`
`+69793950679652694742597709739166693763042633987085`
`+41052684708299085211399427365734116182760315001271`
`+65378607361501080857009149939512557028198746004375`
`+35829035317434717326932123578154982629742552737307`
`+94953759765105305946966067683156574377167401875275`
`+88902802571733229619176668713819931811048770190271`
`+25267680276078003013678680992525463401061632866526`
`+36270218540497705585629946580636237993140746255962`
`+24074486908231174977792365466257246923322810917141`
`+91430288197103288597806669760892938638285025333403`
`+34413065578016127815921815005561868836468420090470`