Commits

Hernan Rojas committed 4a50eff

revised lessons added behance files

Comments (0)

Files changed (20)

lessons/01 - Lesson.ipynb

       "\n",
       "# General syntax to import a library but no functions: \n",
       "##import (library) as (give the library a nickname/alias)\n",
-      "import matplotlib.pyplot as plt"
+      "import matplotlib.pyplot as plt\n",
+      "import pandas as pd #only needed to determine version number"
      ],
      "language": "python",
      "metadata": {},
      "prompt_number": 1
     },
     {
+     "cell_type": "code",
+     "collapsed": false,
+     "input": [
+      "print 'Pandas version ' + pd.__version__"
+     ],
+     "language": "python",
+     "metadata": {},
+     "outputs": [
+      {
+       "output_type": "stream",
+       "stream": "stdout",
+       "text": [
+        "Pandas version 0.10.1\n"
+       ]
+      }
+     ],
+     "prompt_number": 2
+    },
+    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 2
+     "prompt_number": 3
     },
     {
      "cell_type": "markdown",
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 3
+     "prompt_number": 4
     },
     {
      "cell_type": "code",
        ]
       }
      ],
-     "prompt_number": 4
+     "prompt_number": 5
     },
     {
      "cell_type": "markdown",
         "  </thead>\n",
         "  <tbody>\n",
         "    <tr>\n",
-        "      <td><strong>0</strong></td>\n",
+        "      <th>0</th>\n",
         "      <td>     Bob</td>\n",
         "      <td> 968</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>1</strong></td>\n",
+        "      <th>1</th>\n",
         "      <td> Jessica</td>\n",
         "      <td> 155</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>2</strong></td>\n",
+        "      <th>2</th>\n",
         "      <td>    Mary</td>\n",
         "      <td>  77</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>3</strong></td>\n",
+        "      <th>3</th>\n",
         "      <td>    John</td>\n",
         "      <td> 578</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>4</strong></td>\n",
+        "      <th>4</th>\n",
         "      <td>     Mel</td>\n",
         "      <td> 973</td>\n",
         "    </tr>\n",
         "</div>"
        ],
        "output_type": "pyout",
-       "prompt_number": 5,
+       "prompt_number": 6,
        "text": [
         "     Names  Births\n",
         "0      Bob     968\n",
        ]
       }
      ],
-     "prompt_number": 5
+     "prompt_number": 6
     },
     {
      "cell_type": "markdown",
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 6
+     "prompt_number": 7
     },
     {
      "cell_type": "markdown",
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 7
+     "prompt_number": 8
     },
     {
      "cell_type": "markdown",
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 8
+     "prompt_number": 9
     },
     {
      "cell_type": "markdown",
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 9
+     "prompt_number": 10
     },
     {
      "cell_type": "markdown",
         "  </thead>\n",
         "  <tbody>\n",
         "    <tr>\n",
-        "      <td><strong>0</strong></td>\n",
+        "      <th>0</th>\n",
         "      <td> Jessica</td>\n",
         "      <td> 155</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>1</strong></td>\n",
+        "      <th>1</th>\n",
         "      <td>    Mary</td>\n",
         "      <td>  77</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>2</strong></td>\n",
+        "      <th>2</th>\n",
         "      <td>    John</td>\n",
         "      <td> 578</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>3</strong></td>\n",
+        "      <th>3</th>\n",
         "      <td>     Mel</td>\n",
         "      <td> 973</td>\n",
         "    </tr>\n",
         "</div>"
        ],
        "output_type": "pyout",
-       "prompt_number": 10,
+       "prompt_number": 11,
        "text": [
         "       Bob  968\n",
         "0  Jessica  155\n",
        ]
       }
      ],
-     "prompt_number": 10
+     "prompt_number": 11
     },
     {
      "cell_type": "markdown",
         "  </thead>\n",
         "  <tbody>\n",
         "    <tr>\n",
-        "      <td><strong>0</strong></td>\n",
+        "      <th>0</th>\n",
         "      <td>     Bob</td>\n",
         "      <td> 968</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>1</strong></td>\n",
+        "      <th>1</th>\n",
         "      <td> Jessica</td>\n",
         "      <td> 155</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>2</strong></td>\n",
+        "      <th>2</th>\n",
         "      <td>    Mary</td>\n",
         "      <td>  77</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>3</strong></td>\n",
+        "      <th>3</th>\n",
         "      <td>    John</td>\n",
         "      <td> 578</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>4</strong></td>\n",
+        "      <th>4</th>\n",
         "      <td>     Mel</td>\n",
         "      <td> 973</td>\n",
         "    </tr>\n",
         "</div>"
        ],
        "output_type": "pyout",
-       "prompt_number": 11,
+       "prompt_number": 12,
        "text": [
         "         0    1\n",
         "0      Bob  968\n",
        ]
       }
      ],
-     "prompt_number": 11
+     "prompt_number": 12
     },
     {
      "cell_type": "markdown",
         "  </thead>\n",
         "  <tbody>\n",
         "    <tr>\n",
-        "      <td><strong>0</strong></td>\n",
+        "      <th>0</th>\n",
         "      <td>     Bob</td>\n",
         "      <td> 968</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>1</strong></td>\n",
+        "      <th>1</th>\n",
         "      <td> Jessica</td>\n",
         "      <td> 155</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>2</strong></td>\n",
+        "      <th>2</th>\n",
         "      <td>    Mary</td>\n",
         "      <td>  77</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>3</strong></td>\n",
+        "      <th>3</th>\n",
         "      <td>    John</td>\n",
         "      <td> 578</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>4</strong></td>\n",
+        "      <th>4</th>\n",
         "      <td>     Mel</td>\n",
         "      <td> 973</td>\n",
         "    </tr>\n",
         "</div>"
        ],
        "output_type": "pyout",
-       "prompt_number": 12,
+       "prompt_number": 13,
        "text": [
         "     Names  Births\n",
         "0      Bob     968\n",
        ]
       }
      ],
-     "prompt_number": 12
+     "prompt_number": 13
     },
     {
      "cell_type": "markdown",
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 13
+     "prompt_number": 14
     },
     {
      "cell_type": "markdown",
        ]
       }
      ],
-     "prompt_number": 14
+     "prompt_number": 15
     },
     {
      "cell_type": "code",
      "outputs": [
       {
        "output_type": "pyout",
-       "prompt_number": 15,
+       "prompt_number": 16,
        "text": [
         "dtype('int64')"
        ]
       }
      ],
-     "prompt_number": 15
+     "prompt_number": 16
     },
     {
      "cell_type": "markdown",
         "  </thead>\n",
         "  <tbody>\n",
         "    <tr>\n",
-        "      <td><strong>4</strong></td>\n",
+        "      <th>4</th>\n",
         "      <td> Mel</td>\n",
         "      <td> 973</td>\n",
         "    </tr>\n",
         "</div>"
        ],
        "output_type": "pyout",
-       "prompt_number": 16,
+       "prompt_number": 17,
        "text": [
         "  Names  Births\n",
         "4   Mel     973"
        ]
       }
      ],
-     "prompt_number": 16
+     "prompt_number": 17
     },
     {
      "cell_type": "code",
      "outputs": [
       {
        "output_type": "pyout",
-       "prompt_number": 17,
+       "prompt_number": 18,
        "text": [
         "973"
        ]
       }
      ],
-     "prompt_number": 17
+     "prompt_number": 18
     },
     {
      "cell_type": "markdown",
         "  </thead>\n",
         "  <tbody>\n",
         "    <tr>\n",
-        "      <td><strong>4</strong></td>\n",
+        "      <th>4</th>\n",
         "      <td> Mel</td>\n",
         "      <td> 973</td>\n",
         "    </tr>\n",
         "</div>"
        ],
        "output_type": "pyout",
-       "prompt_number": 18,
+       "prompt_number": 19,
        "text": [
         "  Names  Births\n",
         "4   Mel     973"
        "png": "iVBORw0KGgoAAAANSUhEUgAAAbYAAAD9CAYAAADQ4VJrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVVX+//EXCjWWJV4SJ7DBFEK8gZX4bWqkFE0Nx9Kx\nsBRvj8YxTbto5a8aa0oxs7RMp1FL0imwLMU0M1PSspQMTcMSCxIQaRRR84bC+v2xBMEDes7hnLP3\nPufzfDx41Lm/Xej6nL3W3mv5KaUUQgghhJeoZ3QAIYQQwpWksAkhhPAqUtiEEEJ4FSlsQgghvIoU\nNiGEEF5FCpsQQgivctHCNmLECIKCgujQoUPlfcXFxcTFxREeHk7Pnj0pKSmpfGzatGmEhYURERHB\n2rVrK+/ftm0bHTp0ICwsjPHjx7vhjyGEEEJoFy1sw4cPZ82aNdXuS0pKIi4ujj179tC9e3eSkpIA\nyMrKIjU1laysLNasWcOYMWOouETuH//4BwsXLiQ7O5vs7Gyb9xRCCCFc5aKF7bbbbqNx48bV7ktL\nSyMxMRGAxMREli9fDsCKFStISEggICCA0NBQ2rRpw5YtWygsLOTYsWN06dIFgKFDh1a+RgghhHA1\nh+fYioqKCAoKAiAoKIiioiIA9u/fT0hISOXzQkJCKCgosLk/ODiYgoICm/f18/OTH/mRH/mRHyd+\nLiY3N5cGDRrQuXPnyvtmz55Nhw4daN++PbNnz668/7777iM6Opro6GhatWpFdHQ0AFu3bq28v2PH\njqSmpjpaOqhXrx5DhgypvH327FmuueYa4uPjL/q69PT0yuekpqYSFhZ2ydfU6eQRexrVEUop0//8\n85//NDyDt+S0QkbJKTnN/mOPNm3a8N133wGwa9cuFixYQEZGBjt27ODjjz/m559/BiAlJYXMzEwy\nMzMZMGAAAwYMAKBDhw5s27aNzMxM1q5dy0MPPURZWZlD/fuVV17JDz/8wKlTpwD47LPPCAkJcaiG\n3HvvvSxYsOCSz3O4sAUFBXHgwAEACgsLad68OaCPxPLy8iqfl5+fT0hICMHBweTn51e7Pzg42NGP\nNY3c3FyjI9jFCjmtkBEkp6tJTmP9+OOPxMTE8Ic//IH69evTrVs3Pvzww2rPUUqxdOlSEhISAGjQ\noAH16ulycfLkSRo1akT9+vUd/uw+ffqwatUqAN577z0SEhIqi/Px48cZMWIEMTExdO7cmbS0tBrf\nw55i7nBh69evH8nJyQAkJyfTv3//yvtTUlIoLS0lJyeH7OxsunTpQosWLbj66qvZsmULSikWL15c\n+RohhBCe1b59ezZt2kRxcTEnTpxg1apV1Q4+ADZt2kRQUBCtW7euvG/r1q20a9eOdu3a8corrzj1\n2ffeey8pKSmcPn2anTt3EhMTU/nYiy++SPfu3dmyZQvr169n4sSJnDhxwqnP8b/YgwkJCXzxxRcc\nPHiQli1b8vzzz/Pkk08yaNAgFi5cSGhoKEuXLgUgMjKSQYMGERkZib+/P3Pnzq08xJw7dy7Dhg3j\n5MmT9OnThzvvvNOpsGYwbNgwoyPYxQo5rZARJKerSU5jRURE8MQTT9CzZ0+uvPJKoqOjK4/GKrz3\n3nsMHjy42n1dunThhx9+4Mcff+TOO+8kNjaWRo0aOfTZHTp0IDc3l/fee4++fftWe2zt2rWsXLmS\nl19+GYDTp09XGwV0iDIJE0URQgjLuFTfmZOTo9q3b1/r40899ZSaN29e5e0zZ86ooKAgVVBQUOtr\n7rjjDvXtt99Wu2/Lli0qKipKRUVFqZUrV9q8pmHDhkoppZ5//nnVtGlTtWvXLrVhwwZ11113KaWU\nuvHGG9WePXtsXlf1OTXdromsPOKg9PR0oyPYxQo5rZARJKerSU7XOXe6g8N+++03APbt28dHH31U\n7ehs3bp1tG3blmuvvbbyvtzcXM6ePQvAr7/+SnZ2NmFhYdXes0uXLpUnntx11121fvaIESOYMmUK\n7dq1q3Z/r169eO211ypvZ2ZmOveH4xJDkZ72+efQvbvRKYQQwvwOHYIePZx77cCBAzl06BABAQHM\nnTuXq6++uvKx1NTUypNGKnz55ZckJSUREBBAQEAA//nPf6q9xh4VU1PBwcGMHTu28r6K+5955hkm\nTJhAx44dKS8v5/rrryctLc3m7Ht7zqL0U8rO80XdzM/Pj549FZ9+anQSIYQwt6NH9UHAHXfASy/5\nXfRMwdzcXOLj49m5c6cHE7pPeno6M2fOZOXKlbU+x1RDkbt2QR2OPoUQwuudOAF33QVdusC5FQ0v\nyt/fnyNHjlS7QNuqUlNTeeihh2jSpMlFn2eqwjZhAsyYYXSKi7PCuDtYI6cVMoLkdDXJ6bzTp+Hu\nu6FVK3j9dbDn2uaQkBD27dtXeYG2ld1777388MMPlZec1cZUc2wPPgjXXw85OfoXJ4QQQjt7FhIS\n4KqrYOFCqGeqwxJzMdUcm1KKJ56AkyehyskxQgjh08rLITERDh6EFSvgssvOP1bRd4rzTFfY9u+H\ndu0gOxuaNTM6lRBCGEspGDMGsrLgk0/giiuqPy6FzZbpDmavvRbuuQfmzjU6Sc3MOO5eEyvktEJG\nkJyuJjntpxRMmgTbtsHKlbZFTdTMdIUNYOJEeOMNffaPEEL4qn/9Cz79FNasAQcvG/NpphuKrNC/\nP/TsqQ/BhRDC17z6KsybB5s2wbktMGskQ5G2TFvYNm+GIUPgp5/A31TnbgohhHvNnw8vvggbN8J1\n1138uVLYbJlyKBLgllvgj3+EC7YJMpwZxt3tYYWcVsgIktPVJOfFvfsuTJkC69ZduqiJmpm2sIGe\nNH3pJT2BKoQQ3m7FCnj0UT2v1qaN0Wmsy7RDkaCv3WjXTp9IcscdBgUTQggP+OwzuP9+WL0abrrJ\n/tfJUKQtUx+x1aunz5CcPt3oJEII4T5ffgmDB8OyZY4VNVEzUxc20N9gdu2C7duNTqLJ/IDrWCEj\nSE5Xk5zVbdumr93973/htts88pFez/SF7fLLYfx48y+OLIQQjvrhB+jbF/7zH315k3ANU8+xVThy\nRC+OvG0bhIZ6NpcQQrjD3r0QG6unWu6/3/n3kTk2W6Y/YgNo1AhGjtQXLAohhNXl5endr599tm5F\nTdTMEoUN9HDk4sV6O3QjyfyA61ghI0hOV/P1nEVFuqiNG6e36hKuZ5nCFhysN9gz6+LIQghxKcXF\nEBen91V77DGj03gvS8yxVdi9W49J5+ZCgwYeiSWEEC5x7Jg+Urv1Vnj5Zft2v7aHzLHZsswRG0Db\nttC1KyxaZHQSIYSw34kTEB8PUVGuLWqiZpYqbKCX2Xr5ZSgrM+bzfX1+wJWskBEkp6v5Ws7SUhg4\nEEJC9FSKFDX3s1xh+/OfoUUL8y2OLIQQFzp7Vq8ocvnleqSpfn2jE/kGS82xVVixQm/Al5Eh336E\nEOZUXg7Dh8OBA5CWpoubO8gcmy3LHbGBHqv+/XewyIiGEMLHKKVP5//lF/joI/cVNVEzSxY2IxdH\n9rX5AXeyQkaQnK7m7TmVgqeegi1b4OOP4YorXJtLXJolCxvAAw/A99/Djh1GJxFCiPOmTtUF7dNP\n9apJwvMsOcdWYfp02LkTlixxUyghhHDA7NkwZw5s3Ah//KNnPlPm2GxZurCVlOjFkTMz4U9/clMw\nIYSww1tvwXPP6aLmyf5ICpstyw5FAgQGen5xZG+fH/AkK2QEyelq3pgzNRWeeUbvgi1fso1n6cIG\nMGECvPOO8YsjCyF808qVepH2NWsgPNzoNAIsPhRZYcQIPST59NMuDiWEEBfx+ed6QeOPP4YuXYzJ\nIEORtpw+Yps2bRrt2rWjQ4cODB48mNOnT1NcXExcXBzh4eH07NmTkpKSas8PCwsjIiKCtWvXuiR8\nhccf1xO2J0+69G2FEKJWX3+ti9r77xtX1ETNnCpsubm5zJ8/n++++46dO3dSVlZGSkoKSUlJxMXF\nsWfPHrp3705SUhIAWVlZpKamkpWVxZo1axgzZgzl5eUu+0NERuq/WMnJLnvLWnnj/IBRrJARJKer\neUPOzEz461/1NEi3bp7LJOzjVGG7+uqrCQgI4MSJE5w9e5YTJ05w7bXXkpaWRmJiIgCJiYksX74c\ngBUrVpCQkEBAQAChoaG0adOGrVu3uu5PgfGLIwshfMPu3dCnD8ybB3feaXQaURN/Z17UpEkTHnvs\nMa677joaNGhAr169iIuLo6ioiKCgIACCgoIoKioCYP/+/XTt2rXy9SEhIRQUFNi877BhwwgNDQUg\nMDCQqKgoYmNjgfPfnmq7feZMOpdfDh99FMvAgZd+vrffrrjPLHlqu101qxny1HQ7NjbWVHkudruC\nWfJ4W3ted10sPXvCsGHpNG0K4Pl86enpLDq3d1dFfymqc+rkkZ9//pn4+Hg2bdpEo0aN+Nvf/saA\nAQMYN24chw8frnxekyZNKC4uZty4cXTt2pX7778fgFGjRtGnTx/uueee80FcMAG6fLm+6n/LFlkc\nWQjhWgUFcNttek5/zBij05wnJ4/Ycmoo8ttvv+WWW26hadOm+Pv7c8899/D111/TokULDhw4AEBh\nYSHNmzcHIDg4mLy8vMrX5+fnExwc7IL41fXrB0eOuHdx5Au/yZmVFXJaISNITlezYs7fftO7X48e\nba6iJmrmVGGLiIjgm2++4eTJkyilWLduHZGRkcTHx5N87gyO5ORk+vfvD0C/fv1ISUmhtLSUnJwc\nsrOz6eKG04jqnVsc+aWXXP7WQggfVVICvXrpzUInTTI6jbCH09exvfTSSyQnJ1OvXj06d+7MggUL\nOHbsGIMGDWLfvn2EhoaydOlSAgMDAZg6dSpvvfUW/v7+zJ49m169elUP4qLD6VOn9DVta9ZAx451\nfjshhA/7/XeIi4OYGL3CkRmnOGQo0pZXXKB9oaQk+OEHWLzYJW8nhPBBJ09C3776i/L8+eYsaiCF\nrSaWX1KrJqNHw6pV8Ouvrn9vK84PmJUVMoLkdDUr5CwthTvuSCcoCN5807xFTdTMKwtbYKBeZmvW\nLKOTCCGspqwMhgzRxeydd6B+faMTCUd55VAkQH6+nmPbuxeaNHHZ2wohvFh5OYwaBfv26fUf//AH\noxNdmgxF2vLKIzaAkBC95M28eUYnEUJYgVJ6t5CfftLXxFqhqImaeW1hA30h5euvu3ZxZCvMD4A1\nclohI0hOVzNrzqefhi+/1PPzDRuaN6e4NK8ubO3awc0363FyIYSoTVISfPQRfPqpnqMX1ua1c2wV\nNm3SJ5L8+KNMAgshbM2Zo69R27gR3LAgktvJHJstrz5iA7j1VmjWTI+ZCyFEVYsW6ZWKPv/cmkVN\n1MzrC5ufn14GZ/p0PTlcV1YZd7dCTitkBMnpambJ+f77MHkyrF0LNS2Sb5acwnFeX9jg/OLIX3xh\ndBIhhBmsXg1jx8Inn0BEhNFphKt5/Rxbhfnz9eTw6tVu+wghhAWkp8OgQZCWBlW2ibQsmWOz5TOF\n7dQpaNVKn/UkiyML4Zu2bIH4eEhNhdtvNzqNa0hhs+UTQ5GgL7Z8+GF4+eW6vY9Vxt2tkNMKGUFy\nuppROXfs0NMSb79tX1GzSnsKW/5GB/Ck0aOhdWu9XM511xmdRgjhKT/9BL1761P7+/Y1Oo1wN58Z\niqzw+ON6PbhXXnH7RwkhTCA3F/7yF3j+eRg2zOg0ridDkbZ8rrBVLI7888/QuLHbP04IYaD9+3VR\nmzBBnwXpjaSw2fKZObYKISF6nN3ZxZGtMu5uhZxWyAiS09U8lfPgQb379ciRzhU1q7SnsOVzhQ30\ncORrr+kzJYUQ3ufIEejVS+/w8dRTRqcRnuZzQ5EV7rpLH7k9+KDHPlII4QHHj+ui1rkzzJ7t/btf\ny1CkLZ8tbBs36g0Fd++WxZGF8BanTunr1EJCYOFCqOcDY1JS2Gz5wK+9ZrfdpnfWdnRxZKuMu1sh\npxUyguR0NXflPHMG7r1XnxS2YEHdi5pV2lPY8tnC5urFkYUQxikrg8RE/d8lS2QUxtf57FAk6H8E\nbdvqdSS7dfPoRwshXEQpPVf+88969+sGDYxO5FkyFGnLZ4/YQH+re/xxvR+TEMJ6lILHHoOdO2HF\nCt8raqJmPl3YAIYOhW3b9D8Me1hl3N0KOa2QESSnq7ky55QpsH693n7mqqtc9raAddpT2PL5wuaq\nxZGFEJ41Y4ZepX/tWllFSFTn03NsFQ4f1osj79gBLVsaEkEI4YB58/QUwqZN+tR+XyZzbLZ8/ogN\n9Le94cNh1iyjkwghLmXxYnjxRVi3ToqaqJkUtnMmTND7NB0+fPHnWWXc3Qo5rZARJKer1SXnhx/q\ny3TWrtWjLO5klfYUtqSwndOypV6x4N//NjqJEKIma9boPRVXrYLISKPTCDOTObYqdu6Enj0hJ0ef\nVCKEMIeNG2HAAH1K/y23GJ3GXMzQd5qNHLFV0aGDXjh18WKjkwghKmRkwMCB8N57UtSEfaSwXWDS\nJH3qf1lZzY9bZdzdCjmtkBEkp6s5knPnTj1FsHAh9Ojhvkw1sUp7CltS2C7wl79AYKAe8hBCGGfP\nHrjzTn22cny80WmElcgcWw2WLdPXyHzzjffv5SSEGf36q/6S+eyzegdsUTsz9Z1mIUdsNejfH4qL\n9cWfQgjPKizUw46PPipFTTjH6cJWUlLCwIEDadu2LZGRkWzZsoXi4mLi4uIIDw+nZ8+elJSUVD5/\n2rRphIWFERERwdq1a10S3l0utjiyVcbdrZDTChlBcrraxXIeOgRxcXoLmvHjPZepJlZpT2HL6cI2\nfvx4+vTpw+7du/n++++JiIggKSmJuLg49uzZQ/fu3UlKSgIgKyuL1NRUsrKyWLNmDWPGjKG8vNxl\nfwh3GDoUvv0Wdu0yOokQvuHoUT2n1rcv/L//Z3QaYWVOzbEdOXKE6Ohofvnll2r3R0RE8MUXXxAU\nFMSBAweIjY3lxx9/ZNq0adSrV48nnngCgDvvvJMpU6bQtWvX80FMOE784ouQnQ2LFhmdRAjvduKE\nLmodOsCcOTK37Qgz9p1G83fmRTk5OVxzzTUMHz6cHTt2cOONNzJr1iyKiooICgoCICgoiKKiIgD2\n799frYiFhIRQUFBg877Dhg0jNDQUgMDAQKKiooiNjQXODwt48nbHjjBzZiz5+bB3r+c/X27LbV+4\nffo0dOuWTpMm8Prrsfj5mSuf2W6np6ez6Ny37Yr+UlxAOSEjI0P5+/urrVu3KqWUGj9+vHr66adV\nYGBgtec1btxYKaXU2LFj1ZIlSyrvHzlypFq2bFm15zoZxe0eeUSpxx47f3vDhg2GZXGEFXJaIaNS\nktPVquY8c0apu+9WasAA/f9mYpX2NGvfaSSn5thCQkIICQnh5ptvBmDgwIF89913tGjRggMHDgBQ\nWFhI8+bNAQgODiYvL6/y9fn5+QQHB9etInvIhAnw1ltQ5TwYIYQLlJfrXTVOnoR33wV/p8aPhLDl\n9HVsf/nLX1iwYAHh4eFMmTKFEydOANC0aVOeeOIJkpKSKCkpISkpiaysLAYPHszWrVspKCigR48e\n7N27F78qA+lmHiceOlQvuvrkk0YnEcI7KAVjxkBWlt79+oorjE5kXWbuO43idGHbsWMHo0aNorS0\nlNatW/P2229TVlbGoEGD2LdvH6GhoSxdupTAwEAApk6dyltvvYW/vz+zZ8+mV69e1YOY+Jezcyf0\n6gW//CKLIwtRV0rppeu++ELvqXb11UYnsjYz951GkZVH7NSnD9xzD7Rpk145oWtm6enmz2mFjCA5\nXe3vf0/n669jSU+HJk2MTlM7q7Sn2ftOI8jKI3aaNAlmzNDzAkII53zxBXzwgR5+NHNRE9YmR2x2\nUgpiYuCpp+Duu41OI4T1/Pab3hZq4UI9tC9cw+x9pxHkiM1Ofn76qG36dF3khBD2Ky+HBx7QS2VJ\nURPuJoXNAXffDXl56Xz5pdFJLq3igk4zs0JGkJyuMG0anDoFzz1n7pxVWSWnsCWFzQH168O999a8\nOLIQomYbN8Lrr8u1asJzZI7NQSdPQqtW8Pnn0K6d0WmEMLeKebUFC/RakML1rNJ3epIcsTmoQQMY\nNw5eftnoJEKYW3k5DBmif6SoCU+Swuag9PR0/vEPWLEC8vONTlM7K8wPWCEjSE5nTZ8Ox4/Dv/5V\n/X6z5ayNVXIKW1LYnNCkiT67a/Zso5MIYU6bNul/HykpMq8mPE/m2Jy0bx9ER8PPP8O5VcOEEMD/\n/qfn1d58U6/YI9zLan2nJ8gRm5Ouu07/o33zTaOTCGEe5eV60fD775eiJowjhc1BVcfdJ07Uwy2n\nTxuXpzZWmB+wQkaQnI546SU4etR2Xq0qM+S0h1VyCltS2OqgY0fo1AkWLzY6iRDG+/JLmDVLz6sF\nBBidRvgymWOrow0bYPRo2L0b6snXBOGjDh7U82rz5kHfvkan8S1W7TvdSbriOoqN1ftJpaUZnUQI\nY5SX67OE77tPipowBylsDrpw3N2siyNbYX7AChlBcl7Kyy/D4cPw4ov2PV/aU7ibFDYXuOcevXTQ\nV18ZnUQIz/rqK5g5U+bVhLnIHJuLzJunN0+UIUnhKw4d0tdyvvEGxMcbncZ3Wb3vdAcpbC5SsTjy\n+vUQGWl0GiHcq7wc+vWDtm31zvLCOFbvO91BhiIdVNu4e4MGMHaseRZHtsL8gBUyguSsycyZ+oht\n6lTHXyvtKdxNCpsLjRkDy5dDQYHRSYRwn82b9Rc4mVcTZiVDkS42YQJcdplsRiq806FD+nq111/X\nQ5HCeN7Sd7qSFDYX+/VX/Q//l1+gUSOj0wjhOkrpYhYerocihTl4S9/pSjIU6aBLjbv/6U/Qu7fx\niyNbYX7AChlBclZ45RW9cv+0aXV7H2lP4W5S2Nxg4kS9Zp4ZF0cWwhnffKMXIUhJ0UPtQpiZDEW6\nyZ13wt/+BiNHGp1EiLopLtbD67Nnw1//anQacSFv6ztdQQqbm6xfr8+SzMqSxZGFdSkF/fvD9dfD\nq68anUbUxNv6TleQLtdB9o673347NGwIK1e6N09trDA/YIWM4Ns5Z82CwkI9DOkqvtyewjOksLlJ\nxeLIctq/sKotW/SJIqmpMq8mrEWGIt3o7Fm44QZ45x3485+NTiOE/Q4f1utAzpqlhyKFeXlj31lX\nUtjcbO5c+PRTWLHC6CRC2EcpuPtuCA3VhU2Ym7f2nXUhQ5EOcnTcffhwfar07t3uyVMbK8wPWCEj\n+F7O2bNh/373DaP7WnsKz5PC5mZmWxxZiIvZulUvbCzzasLKZCjSAw4dgrAw2LULrr3W6DRC1Ozw\nYX292syZevNcYQ3e3Hc6Swqbh4wfD3/4g2tPmxbCVZTSxaxlS3jtNaPTCEd4e9/pDBmKdJCz4+6P\nPAILFsCRI67NUxsrzA9YISP4Rs7XX4e8PM9sGuoL7SmM5XRhKysrIzo6mvhze8IXFxcTFxdHeHg4\nPXv2pKSkpPK506ZNIywsjIiICNauXVv31BYUGqqX2TJ6cWQhLpSRAS+8AEuXwuWXG51GiLpzeijy\nlVdeYdu2bRw7doy0tDQmTZpEs2bNmDRpEtOnT+fw4cMkJSWRlZXF4MGDycjIoKCggB49erBnzx7q\nXbDOlC8cTm/fDn376i1tpAMRZlBSoufVZsyAAQOMTiOc4Qt9p6OcOmLLz89n9erVjBo1qrJB09LS\nSExMBCAxMZHly5cDsGLFChISEggICCA0NJQ2bdqwdetWF8W3lqgoaN8e/vtfo5MIoefVRo7UX7ak\nqAlv4u/Mix555BFmzJjB0aNHK+8rKioiKCgIgKCgIIqKigDYv38/Xbt2rXxeSEgIBQUFNb7vsGHD\nCA0NBSAwMJCoqChiY2OB8+PdRt+uuM/Z10+aFMvYsRAamk69eu7LO2vWLFO2X9Xb27dvZ8KECabJ\nU9vtC3/3Ruep7baj7fnhh5CbG8u770p7WunvZ3p6OosWLQKo7C/FBZSDVq5cqcaMGaOUUmrDhg3q\nrrvuUkopFRgYWO15jRs3VkopNXbsWLVkyZLK+0eOHKmWLVtm875ORDHEhg0b6vT68nKlOndWasUK\n1+SpTV1zeoIVMirlnTkzMpS65hql9u51X57aeGN7GskqfacnOXzEtnnzZtLS0li9ejWnTp3i6NGj\nDBkyhKCgIA4cOECLFi0oLCykefPmAAQHB5OXl1f5+vz8fIKDg11Vlz2u4huUs6oujtyvn2sy1aSu\nOT3BChnB+3KWlMC998Ibb0Dr1u7NVBNva09hPg7PsU2dOpW8vDxycnJISUnhjjvuYPHixfTr14/k\n5GQAkpOT6X9u5dR+/fqRkpJCaWkpOTk5ZGdn06VLF9f+KSxmwAC9ZNFXXxmdRPgapWDUqPMb4Qrh\njep8HZufnx8ATz75JJ999hnh4eGsX7+eJ598EoDIyEgGDRpEZGQkvXv3Zu7cuZWvsaKq8wPO8veH\nxx5z7zVDrsjpblbICN6Vc+5cfVbuzJnuz1Mbb2pPYU5OnTxSoVu3bnTr1g2AJk2asG7duhqfN3ny\nZCZPnlyXj/I6w4fD88/Djz9CRITRaYQv2LYNpkyBr7/Wq+AI4a1kSS0DPf887NunVyQRwp2OHNHX\nq02bBoMGGZ1GuJIv9p2XIoXNQLI4svAEpfTJIs2a6aFI4V18se+8FFkr0kGuHHdv2hQeeMA9i85a\nYX7AChnB+jnnzYPsbHjlFc/mqY3V21OYnxQ2gz36KMyfD1WudRfCZTIz4Z//1OtAyrya8BUyFGkC\ngwdDdDRMnGh0EuFNjh7V82ovvAD33Wd0GuEuvtx31kYKmwlkZsJdd8niyMJ1lNLFrHFj+Pe/jU4j\n3MmX+87ayFCkg9wx7h4dDe3awbvvuu49rTA/YIWMYM2cb74JP/0Er75qXJ7aWLE9hbVIYTOJSZP0\nBdvl5UYnEVa3fTs884yeV2vQwOg0QnieDEWahFJw443w3HNwbu9WIRx29CjcdJP+e5SQYHQa4Qm+\n3nfWRAqbiaSk6IVpN20yOomwIqV0MWvUSHZq9yXSd9qSoUgHuXPcfeBAKCiAzZvr/l5WmB+wQkaw\nTs7HH08xJFUJAAARMklEQVRn926YNcvoJBdnlfa0Sk5hSwqbiXhicWThnXbsgIULZV5NCJChSNM5\ncQJCQ2HjRlkcWdjn2DE9P/vPf8L99xudRnia9J22pLCZ0HPPQX6+XpFEiItRShezK6+Uvy++SvpO\nWzIU6SBPjLs/9BAsWwaFhc6/hxXmB6yQEcydc8ECvYj2a6+ZO2dVklO4mxQ2E2rWTH8Ld8fiyMJ7\nfP89TJ4s82pCXEiGIk0qJ0dfj5STA1dfbXQaYTbHjsHNN8PTT+sdIoTvkr7TlhyxmVSrVtCzJ/zn\nP0YnEWajFIweDbfeKkVNiJpIYXOQJ8fdJ07U1ySVljr+WivMD1ghI5gv58KFehjywqFqs+WsjeQU\n7iaFzcQ6d4a2bV27OLKwtp074amn9LzaFVcYnUYIc5I5NpP77DOYMEF3aPXka4hP+/13Pe86eTIM\nHWp0GmEW0nfakq7S5Hr0gMsug9WrjU4ijKQU/OMfcMstUtSEuBQpbA7y9Li7n5/e0uallxx7nRXm\nB6yQEcyR8+239Ya0c+bU/hwz5LSH5BTuJoXNAv72N8jLg6+/NjqJMMKuXfDEEzKvJoS9ZI7NIubM\ngfXr4cMPjU4iPOn33/X1ak8+CYmJRqcRZiR9py0pbBZx/Li+tm3TJrjhBqPTCE9QShez+vX1UKQQ\nNZG+05YMRTrIqHH3K6+EMWNg5kz7nm+F+QErZATjci5aBNu2XXxerSppT9eySk5hSwqbhTz0EHzw\nARw4YHQS4W4//KBPGlq6VH+pEULYT4YiLWbsWLjqKpg2zegkwl2OH9fzahMnwvDhRqcRZid9py0p\nbBbzyy+605PFkb3X8OFQXq6HIv38jE4jzE76TlsyFOkgo8fdr78e4uIuvamk0TntYYWM4NmcixbB\nli0wd67jRU3a07WsklPYksJmQRMnwquvOrc4sjCvrCz9u5V5NSHqRoYiLapHDxgyRK5t8hbHj0OX\nLvDYYzBihNFphJVI32lLCptFrV0Ljz6qty+RxZGtb8QIOHsWkpNlXk04RvpOW9IlOsgs4+5xceDv\nD598UvPjZsl5MVbICO7P+c47erk0Z+bVqpL2dC2r5BS2nCpseXl53H777bRr14727dvz2rkdD4uL\ni4mLiyM8PJyePXtSUlJS+Zpp06YRFhZGREQEa9eudU16H+bs4sjCXHbv1sOPS5dCw4ZGpxHCOzg1\nFHngwAEOHDhAVFQUv//+OzfeeCPLly/n7bffplmzZkyaNInp06dz+PBhkpKSyMrKYvDgwWRkZFBQ\nUECPHj3Ys2cP9aqMocnhtOPOnoU2bSAlBbp2NTqNcNSJE3pebcIEGDXK6DTCqqTvtOXUEVuLFi2I\niooCoGHDhrRt25aCggLS0tJIPHc2Q2JiIsuXLwdgxYoVJCQkEBAQQGhoKG3atGHr1q0u+iP4Ln9/\n/W1/xgyjkwhnPPwwREXByJFGJxHCu/jX9Q1yc3PJzMwkJiaGoqIigoKCAAgKCqKoqAiA/fv307XK\nIUVISAgFBQU27zVs2DBCQ0MBCAwMJCoqitjYWOD8eLfRtyvuM0ueESNi+de/YPHidFq2PP/4rFmz\nTNl+VW9v376dCRMmmCZPbbcv/N274v0nT05n7VrIyorFz0/a00z5Km6btT3T09NZtGgRQGV/KS6g\n6uDYsWOqc+fO6qOPPlJKKRUYGFjt8caNGyullBo7dqxasmRJ5f0jR45Uy5Ytq/bcOkbxmA0bNhgd\nwcazzyr14IPV7zNjzgtZIaNSrs+5e7dSzZoptWOHS9/WZ9vTXayS0yp9pyc5fVbkmTNnGDBgAEOG\nDKF///6APko7cG6F3sLCQpo3bw5AcHAweXl5la/Nz88nODjY+WpsoIpvUGYydqw++aDq4shmzHkh\nK2QE1+Y8cUJvHDt1KnTs6LK3BXyzPd3JKjmFLacKm1KKkSNHEhkZWXmoDtCvXz+Sk5MBSE5Orix4\n/fr1IyUlhdLSUnJycsjOzqZLly4uiC8ArrkGBg+GcyenChMbP14XNDlZRAg3cuYwb9OmTcrPz091\n6tRJRUVFqaioKPXJJ5+oQ4cOqe7du6uwsDAVFxenDh8+XPmaF198UbVu3VrdcMMNas2aNTbv6WQU\njzPr8MTevUo1barU0aP6tllzVmWFjEq5LueSJUqFh5//Hbmar7Wnu1klp1X6Tk9y6uSRW2+9lfLy\n8hofW7duXY33T548mcmTJzvzccIOrVtD9+56ceRHHzU6jbjQTz/p0/rXrdPbDgkh3EeW1PIi334L\nd98NP/8Ml11mdBpR4eRJiInRG8X+/e9GpxHeRvpOW7Kklhe56SYID9cXbAvzmDAB2rWDBx80OokQ\nvkEKm4OqXoNjRhXLbG3YkG50lEsye1tWqEvOd9+FDRvgzTfdv7ixL7SnJ1klp7Alhc3L9OypVyTZ\nssXoJGLPHn0W5NKlstu5EJ4kc2xe6N134Y03dIdq0csFLe/kSfi//4PRo/WPEO4ifactKWxe6MwZ\nvQnp559DQADcfHP1nyZNjE7o/UaPhsOH9Xyn7K8m3En6TlsyFOkgK4y7BwTA6NHp/PYbfPUV3H8/\nHDkC06ZBaKjeESAhAV55Bb78Uu/ebAQrtCU4njMlRX+pmD/fs0XNW9vTKFbJKWzVeRFkYV5+ftCq\nlf4ZNEjfV1YGP/4IGRn6JyUFdu3Sxe7mm/U2KjffDB066AIpHJOdDePG6R3OZV5NCGPIUKTg9Gn4\n/vvzxW7rVsjN1Us/VR3CDA+HenKMX6tTp/S+eA8+CGPGGJ1G+ArpO21JYRM1OnYMvvvufKHLyIDi\nYn2tXNVi17KlzCFVGDMGDh6E1FRpE+E50nfaku/fDrLKuHtdc151FXTrBo8/rs+uzMmBvXv17QYN\n4O23dWH74x8hPh6efx4++UR37J7K6Cn25Fy6VA8/enperSpvak8zsEpOYUvm2ITdrrkGevfWPwBK\nQV7e+aO6GTNg2zZo2vT8EV2XLtC5MzRsaGx2d9q7V28dtGYNNGpkdBohhAxFCpcqL9cXJlcMX2Zk\nwM6d+gSWqiendOzoHetZnjoFt9wCI0fqtSCF8DTpO21JYRNuV1qqi1tFocvI0Ec57dufL3Q33ww3\n3AD16xud1jEPPQS//aaHImVeTRhB+k5bMsfmIKuMu5sp52WXwY036ouWFy7UZ2D+73/wwAPpXH+9\nHsKLj4fGjeH22/V6l++/r8/MNMO/19ra8v33dfYFC8xR1Mz0O78YySncTebYhCGuvFIPR8bGnr/v\n0CG99U5GBixZAg8/rK+7u3DllObNDYtdae9efbT2yScyryaE2chQpDAtpaCgoPr1dd9+C4GB1U9O\nufFGz27eefq0nlcbNkxfjC2EkaTvtCWFTVhKebk+Wqp6fd2OHfCnP1U/OaVTJ7j8cvdkGDcO9u+H\nDz4wxxCk8G3Sd9qSOTYHWWXc3Qo5nclYr55eAeX++2H2bNi8GUpK9I4Gf/4zbN+uV/5o3FhfTD5m\njL7mbtcuPaxZ15wffACrVum5QrMVNSv8zkFyCveTOTZheQEBEBWlfyp2qT5xAjIz9RHdunV6AejC\nQn1NXdX5ulat7C9Qv/yiC+WqVXo4VAhhTjIUKXzG4cPnT06p+Dl1yvbklBYtbF97+rQ+Ihw6VJ/U\nIoRZSN9pSwqb8Gn791cvdBkZepWUC09OeeYZyM+HZcvMNwQpfJv0nbZkjs1BVhl3t0JOM2S89lr4\n61/hhRfg00/1JQfr18PAgfrC62efhRYt0k07r1aVGdrTHpJTuJvMsQlRhZ+f3puuYjNW0JuG3nqr\n+86yFEK4lgxFCiGEhUnfaUuGIoUQQngVKWwOssq4uxVyWiEjSE5Xk5zC3aSwCSGE8CoyxyaEEBYm\nfactOWITQgjhVaSwOcgq4+5WyGmFjCA5XU1yCneTwiaEEMKryBybEEJYmPSdtuSITQghhFeRwuYg\nq4y7WyGnFTKC5HQ1ySncTQqbg7Zv3250BLtYIacVMoLkdDXJKdzNY4VtzZo1REREEBYWxvTp0z31\nsS5XUlJidAS7WCGnFTKC5HQ1ySnczSOFraysjLFjx7JmzRqysrJ477332L17tyc+WgghhI/xSGHb\nunUrbdq0ITQ0lICAAO677z5WrFjhiY92udzcXKMj2MUKOa2QESSnq0lO4W4eOd3/gw8+4NNPP2X+\n/PkALFmyhC1btvD666+fD2LmHRyFEMLE5HT/6jyy0ag9RUt+MUIIIVzBI0ORwcHB5OXlVd7Oy8sj\nJCTEEx8thBDCx3iksN10001kZ2eTm5tLaWkpqamp9OvXzxMfLYQQwsd4ZCjS39+fOXPm0KtXL8rK\nyhg5ciRt27b1xEcLIYTwMR67jq1379789NNPzJkzh+Tk5Itez/bwww8TFhZGp06dyMzM9FTEai51\n3V16ejqNGjUiOjqa6OhoXnjhBY9nHDFiBEFBQXTo0KHW55ihLS+V0wxtmZeXx+233067du1o3749\nr732Wo3PM7o97clphvY8deoUMTExREVFERkZyVNPPVXj84xuT3tymqE9K5SVlREdHU18fHyNjxvd\nnqahPOjs2bOqdevWKicnR5WWlqpOnTqprKysas9ZtWqV6t27t1JKqW+++UbFxMR4MqLdOTds2KDi\n4+M9nq2qjRs3qu+++061b9++xsfN0JZKXTqnGdqysLBQZWZmKqWUOnbsmAoPDzfl3017cpqhPZVS\n6vjx40oppc6cOaNiYmLUpk2bqj1uhvZU6tI5zdKeSik1c+ZMNXjw4BrzmKU9zcCjS2rZcz1bWloa\niYmJAMTExFBSUkJRUZEnY9p93Z0y+EzO2267jcaNG9f6uBnaEi6dE4xvyxYtWhAVFQVAw4YNadu2\nLfv376/2HDO0pz05wfj2BLjiiisAKC0tpaysjCZNmlR73AztaU9OMEd75ufns3r1akaNGlVjHrO0\npxl4tLAVFBTQsmXLytshISEUFBRc8jn5+fkey1hbhgtz+vn5sXnzZjp16kSfPn3IysryaEZ7mKEt\n7WG2tszNzSUzM5OYmJhq95utPWvLaZb2LC8vJyoqiqCgIG6//XYiIyOrPW6W9rxUTrO05yOPPMKM\nGTOoV6/mbtss7WkGHi1s9l6EfeG3EU9fvG3P53Xu3Jm8vDx27NjBuHHj6N+/vweSOc7otrSHmdry\n999/Z+DAgcyePZuGDRvaPG6W9rxYTrO0Z7169di+fTv5+fls3LixxtXyzdCel8pphvb8+OOPad68\nOdHR0Rc9ejRDe5qBRwubPdezXfic/Px8goODPZaxpgw15bzqqqsqhzB69+7NmTNnKC4u9mjOSzFD\nW9rDLG155swZBgwYwAMPPFBj52WW9rxUTrO0Z4VGjRrRt29fvv3222r3m6U9K9SW0wztuXnzZtLS\n0mjVqhUJCQmsX7+eoUOHVnuO2drTSB4tbPZcz9avXz/eeecdAL755hsCAwMJCgryZEy7chYVFVV+\nO9q6dStKqRrH5o1khra0hxnaUinFyJEjiYyMZMKECTU+xwztaU9OM7TnwYMHK1fHP3nyJJ999hnR\n0dHVnmOG9rQnpxnac+rUqeTl5ZGTk0NKSgp33HFHZdtVMEN7moVHrmOr/LBarmd78803Afj73/9O\nnz59WL16NW3atOHKK6/k7bff9mREu3N+8MEHzJs3D39/f6644gpSUlI8njMhIYEvvviCgwcP0rJl\nS5577jnOnDlTmdEMbWlPTjO05VdffcWSJUvo2LFjZcc2depU9u3bV5nTDO1pT04ztGdhYSGJiYmU\nl5dTXl7OkCFD6N69u+n+rduT0wzteaGKIUaztadZeGQRZCGEEMJTZAdtIYQQXkUKmxBCCK8ihU0I\nIYRXkcImhBDCq0hhE0II4VWksAkhhPAq/x8nq8SEj0IppAAAAABJRU5ErkJggg==\n"
       }
      ],
-     "prompt_number": 18
+     "prompt_number": 19
     }
    ],
    "metadata": {}

lessons/02 - Lesson.ipynb

       "\n",
       "# General syntax to import a library but no functions: \n",
       "##import (library) as (give the library a nickname/alias)\n",
-      "import matplotlib.pyplot as plt"
+      "import matplotlib.pyplot as plt\n",
+      "import pandas as pd"
      ],
      "language": "python",
      "metadata": {},
      "prompt_number": 1
     },
     {
+     "cell_type": "code",
+     "collapsed": false,
+     "input": [
+      "print 'Pandas version ' + pd.__version__"
+     ],
+     "language": "python",
+     "metadata": {},
+     "outputs": [
+      {
+       "output_type": "stream",
+       "stream": "stdout",
+       "text": [
+        "Pandas version 0.10.1\n"
+       ]
+      }
+     ],
+     "prompt_number": 2
+    },
+    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 2
+     "prompt_number": 3
     },
     {
      "cell_type": "markdown",
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 3
+     "prompt_number": 4
     },
     {
      "cell_type": "code",
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 4
+     "prompt_number": 5
     },
     {
      "cell_type": "code",
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 5
+     "prompt_number": 6
     },
     {
      "cell_type": "code",
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 6
+     "prompt_number": 7
     },
     {
      "cell_type": "code",
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 7
+     "prompt_number": 8
     },
     {
      "cell_type": "markdown",
      "source": [
       "**seed(500)** - Create seed\n",
       "\n",
-      "**randint(low=0,high=len(names)-1)** - Generate a random integer between zero and (the length of the list \"names\" minus one).  \n",
+      "**randint(low=0,high=len(names))** - Generate a random integer between zero and the length of the list \"names\".    \n",
       "\n",
       "**names[n]** - Select the name where its index is equal to n.  \n",
       "\n",
        ]
       }
      ],
-     "prompt_number": 8
+     "prompt_number": 9
     },
     {
      "cell_type": "markdown",
        ]
       }
      ],
-     "prompt_number": 9
+     "prompt_number": 10
     },
     {
      "cell_type": "markdown",
        ]
       }
      ],
-     "prompt_number": 10
+     "prompt_number": 11
     },
     {
      "cell_type": "markdown",
         "  </thead>\n",
         "  <tbody>\n",
         "    <tr>\n",
-        "      <td><strong>0</strong></td>\n",
+        "      <th>0</th>\n",
         "      <td>    Mary</td>\n",
         "      <td> 968</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>1</strong></td>\n",
+        "      <th>1</th>\n",
         "      <td> Jessica</td>\n",
         "      <td> 155</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>2</strong></td>\n",
+        "      <th>2</th>\n",
         "      <td> Jessica</td>\n",
         "      <td>  77</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>3</strong></td>\n",
+        "      <th>3</th>\n",
         "      <td>     Bob</td>\n",
         "      <td> 578</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>4</strong></td>\n",
+        "      <th>4</th>\n",
         "      <td> Jessica</td>\n",
         "      <td> 973</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>5</strong></td>\n",
+        "      <th>5</th>\n",
         "      <td> Jessica</td>\n",
         "      <td> 124</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>6</strong></td>\n",
+        "      <th>6</th>\n",
         "      <td> Jessica</td>\n",
         "      <td> 155</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>7</strong></td>\n",
+        "      <th>7</th>\n",
         "      <td>    Mary</td>\n",
         "      <td> 403</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>8</strong></td>\n",
+        "      <th>8</th>\n",
         "      <td>    Mary</td>\n",
         "      <td> 199</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>9</strong></td>\n",
+        "      <th>9</th>\n",
         "      <td>    Mary</td>\n",
         "      <td> 191</td>\n",
         "    </tr>\n",
         "</div>"
        ],
        "output_type": "pyout",
-       "prompt_number": 11,
+       "prompt_number": 12,
        "text": [
         "     Names  Births\n",
         "0     Mary     968\n",
        ]
       }
      ],
-     "prompt_number": 11
+     "prompt_number": 12
     },
     {
      "cell_type": "markdown",
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 12
+     "prompt_number": 13
     },
     {
      "cell_type": "markdown",
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 13
+     "prompt_number": 14
     },
     {
      "cell_type": "markdown",
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 14
+     "prompt_number": 15
     },
     {
      "cell_type": "markdown",
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 15
+     "prompt_number": 16
     },
     {
      "cell_type": "markdown",
      "outputs": [
       {
        "output_type": "pyout",
-       "prompt_number": 16,
+       "prompt_number": 17,
        "text": [
         "<class 'pandas.core.frame.DataFrame'>\n",
         "Int64Index: 999 entries, 0 to 998\n",
        ]
       }
      ],
-     "prompt_number": 16
+     "prompt_number": 17
     },
     {
      "cell_type": "markdown",
         "  </thead>\n",
         "  <tbody>\n",
         "    <tr>\n",
-        "      <td><strong>0</strong></td>\n",
+        "      <th>0</th>\n",
         "      <td> Jessica</td>\n",
         "      <td> 155</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>1</strong></td>\n",
+        "      <th>1</th>\n",
         "      <td> Jessica</td>\n",
         "      <td>  77</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>2</strong></td>\n",
+        "      <th>2</th>\n",
         "      <td>     Bob</td>\n",
         "      <td> 578</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>3</strong></td>\n",
+        "      <th>3</th>\n",
         "      <td> Jessica</td>\n",
         "      <td> 973</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>4</strong></td>\n",
+        "      <th>4</th>\n",
         "      <td> Jessica</td>\n",
         "      <td> 124</td>\n",
         "    </tr>\n",
         "</div>"
        ],
        "output_type": "pyout",
-       "prompt_number": 17,
+       "prompt_number": 18,
        "text": [
         "      Mary  968\n",
         "0  Jessica  155\n",
        ]
       }
      ],
-     "prompt_number": 17
+     "prompt_number": 18
     },
     {
      "cell_type": "markdown",
      "outputs": [
       {
        "output_type": "pyout",
-       "prompt_number": 18,
+       "prompt_number": 19,
        "text": [
         "<class 'pandas.core.frame.DataFrame'>\n",
         "Int64Index: 1000 entries, 0 to 999\n",
        ]
       }
      ],
-     "prompt_number": 18
+     "prompt_number": 19
     },
     {
      "cell_type": "markdown",
         "  </thead>\n",
         "  <tbody>\n",
         "    <tr>\n",
-        "      <td><strong>995</strong></td>\n",
+        "      <th>995</th>\n",
         "      <td>    John</td>\n",
         "      <td> 151</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>996</strong></td>\n",
+        "      <th>996</th>\n",
         "      <td> Jessica</td>\n",
         "      <td> 511</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>997</strong></td>\n",
+        "      <th>997</th>\n",
         "      <td>    John</td>\n",
         "      <td> 756</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>998</strong></td>\n",
+        "      <th>998</th>\n",
         "      <td> Jessica</td>\n",
         "      <td> 294</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>999</strong></td>\n",
+        "      <th>999</th>\n",
         "      <td>    John</td>\n",
         "      <td> 152</td>\n",
         "    </tr>\n",
         "</div>"
        ],
        "output_type": "pyout",
-       "prompt_number": 19,
+       "prompt_number": 20,
        "text": [
         "           0    1\n",
         "995     John  151\n",
        ]
       }
      ],
-     "prompt_number": 19
+     "prompt_number": 20
     },
     {
      "cell_type": "markdown",
         "  </thead>\n",
         "  <tbody>\n",
         "    <tr>\n",
-        "      <td><strong>0</strong></td>\n",
+        "      <th>0</th>\n",
         "      <td>    Mary</td>\n",
         "      <td> 968</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>1</strong></td>\n",
+        "      <th>1</th>\n",
         "      <td> Jessica</td>\n",
         "      <td> 155</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>2</strong></td>\n",
+        "      <th>2</th>\n",
         "      <td> Jessica</td>\n",
         "      <td>  77</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>3</strong></td>\n",
+        "      <th>3</th>\n",
         "      <td>     Bob</td>\n",
         "      <td> 578</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>4</strong></td>\n",
+        "      <th>4</th>\n",
         "      <td> Jessica</td>\n",
         "      <td> 973</td>\n",
         "    </tr>\n",
         "</div>"
        ],
        "output_type": "pyout",
-       "prompt_number": 20,
+       "prompt_number": 21,
        "text": [
         "     Names  Births\n",
         "0     Mary     968\n",
        ]
       }
      ],
-     "prompt_number": 20
+     "prompt_number": 21
     },
     {
      "cell_type": "markdown",
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 21
+     "prompt_number": 22
     },
     {
      "cell_type": "markdown",
      "outputs": [
       {
        "output_type": "pyout",
-       "prompt_number": 22,
+       "prompt_number": 23,
        "text": [
         "array([Mary, Jessica, Bob, John, Mel], dtype=object)"
        ]
       }
      ],
-     "prompt_number": 22
+     "prompt_number": 23
     },
     {
      "cell_type": "code",
        ]
       }
      ],
-     "prompt_number": 23
+     "prompt_number": 24
     },
     {
      "cell_type": "code",
        ]
       }
      ],
-     "prompt_number": 24
+     "prompt_number": 25
     },
     {
      "cell_type": "markdown",
      "language": "python",
      "metadata": {},
      "outputs": [],
-     "prompt_number": 25
+     "prompt_number": 26
     },
     {
      "cell_type": "code",
         "  </thead>\n",
         "  <tbody>\n",
         "    <tr>\n",
-        "      <td><strong>Bob</strong></td>\n",
+        "      <th>Bob</th>\n",
         "      <td> 106817</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>Jessica</strong></td>\n",
+        "      <th>Jessica</th>\n",
         "      <td>  97826</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>John</strong></td>\n",
+        "      <th>John</th>\n",
         "      <td>  90705</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>Mary</strong></td>\n",
+        "      <th>Mary</th>\n",
         "      <td>  99438</td>\n",
         "    </tr>\n",
         "    <tr>\n",
-        "      <td><strong>Mel</strong></td>\n",
+        "      <th>Mel</th>\n",
         "      <td> 102319</td>\n",
         "    </tr>\n",
         "  </tbody>\n",
         "</div>"
        ],
        "output_type": "pyout",
-       "prompt_number": 26,
+       "prompt_number": 27,
        "text": [
         "         Births\n",
         "Names          \n",
        ]
       }
      ],
-     "prompt_number": 26
+     "prompt_number": 27
     },
     {
      "cell_type": "markdown",
         "  </thead>\n",
         "  <tbody>\n",
         "    <tr>\n",
-        "      <td><strong>Bob</strong></td>\n",
+        "      <th>Bob</th>\n",
         "      <td> 106817</td>\n",
         "    </tr>\n",
         "  </tbody>\n",
         "</div>"
        ],
        "output_type": "pyout",
-       "prompt_number": 27,
+       "prompt_number": 28,
        "text": [
         "       Births\n",
         "Names        \n",
        ]
       }
      ],
-     "prompt_number": 27
+     "prompt_number": 28
     },
     {
      "cell_type": "code",
      "outputs": [
       {
        "output_type": "pyout",
-       "prompt_number": 28,
+       "prompt_number": 29,
        "text": [
         "106817.0"
        ]
       }
      ],
-     "prompt_number": 28
+     "prompt_number": 29
     },
     {
      "cell_type": "markdown",
         "  </thead>\n",
         "  <tbody>\n",
         "    <tr>\n",
-        "      <td><strong>Bob</strong></td>\n",
+        "      <th>Bob</th>\n",
         "      <td> 106817</td>\n",
         "    </tr>\n",
         "  </tbody>\n",
         "</div>"
        ],
        "output_type": "pyout",
-       "prompt_number": 29,
+       "prompt_number": 30,
        "text": [
         "       Births\n",
         "Names        \n",
        "png": "iVBORw0KGgoAAAANSUhEUgAAAdkAAAEMCAYAAACItMyeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcFfX+x/EXKqVXUxQTDSyMRbKDYCZqN5Uugkum5kZW\nKmqbpZmVmbfNll9S6i0qrVthbiUZmtqGmLK0XFHQzCWTCkQQTQHXFEM+vz8mTuKCiIcz58Dn+Xjw\niJk5M7zPeJrv+c73O9+vi4gISimllLK5OmYHUEoppWoqLWSVUkqpaqKFrFJKKVVNtJBVSimlqokW\nskoppVQ10UJWKaWUqiYVFrJjxozBw8ODwMBA67rCwkLCw8Px9/cnIiKCgwcPAnDixAmGDx9O+/bt\nadeuHdHR0dZ9MjIyCAwMxM/Pj4kTJ1rXFxcXExkZiZ+fH126dGHXrl3WbfPnz8ff3x9/f38WLFhg\nszeslFJK2UuFhezo0aNJSEgoty46Oprw8HB27txJWFiYtTCNi4sD4McffyQjI4P//ve/5OTkADBu\n3DhiY2PJzMwkMzPTeszY2Fjc3d3JzMxk0qRJTJkyBTAK8hdeeIH169ezfv16nn/+eWthrpRSSjmL\nCgvZbt260bRp03LrVq5cyahRowAYNWoUy5cvB6BVq1YcO3aMU6dOcezYMS677DIaN25Mfn4+R44c\nISQkBICRI0da9zn9WIMHD2bNmjUArFq1ioiICNzc3HBzcyM8PPyswl4ppZRydPUudod9+/bh4eEB\ngIeHB/v27QOgV69eLFy4kFatWvHHH3/w+uuv4+bmxi+//IKXl5d1f09PT/Ly8gDIy8ujdevWRpB6\n9WjSpAkFBQXs2bOn3D5eXl7WfU7n4uJysfGVUqrW04H+7OeSOj65uLhYC7pFixZx/Phx8vPzycrK\nYubMmWRlZdkkZEVExKF/nnvuOdMzaE7NqTk1Z9mPsq+LLmQ9PDzYu3cvAPn5+bRo0QKA77//nttv\nv526dety5ZVX8s9//pOMjAy8vLzIzc217p+bm2utpXp6elrbbUtKSjh06BDu7u54enqye/du6z67\nd+8uV7N1JtnZ2WZHqBTNaVua07Y0p3JWF13I9u/fn/nz5wNGD+CBAwcCEBAQwNq1awE4duwY69at\nIyAggJYtW9K4cWPS0tIQERYuXMiAAQPOOlZ8fDxhYWEAREREkJiYyMGDBykqKmL16tX06tXr0t+t\nUkopZU9SgTvuuENatWolrq6u4uXlJXPnzpWCggIJCwsTPz8/CQ8Pl6KiIhEROXHihNx1111isVik\nXbt2MnPmTOtx0tPTxWKxiI+Pj0yYMMG6/sSJEzJ06FDx9fWVzp07S1ZWlnXb3LlzxdfXV3x9fWXe\nvHnnzHeB+A4hKSnJ7AiVojltS3Palua0HWe4btYkLiLOe5PexcVF2xiUUuoi6HXTvnTEp2qWnJxs\ndoRK0Zy2pTltS3MqZ6WFrFJKqbOca8Q/OP+of2AMRtS1a1csFgvt27fn5MmTAHzwwQcEBgYSFBRE\nnz59KCgoACA1NZUbbrgBV1dXli5daj1OUlISHTp0sP40aNCAlStXnpWxolEDKyM5OZkmTZrQoUMH\ngoKCCA8PZ//+/RXuM23aNGbNmlX5P2Lu3epL4+TxlVLK7ip73UxNTZWNGzeKxWIpt37y5Mnyyiuv\niIhIdHS0TJkyRURE/vzzT2nfvr38+OOPIiJSWFgop06dkuLiYmnWrJkUFBSIiMgTTzwh06ZNExGR\n7Oxs+fHHH2XkyJESHx9/zhyFhYXSrFkzOX78+FnbZs+eLePGjRMRkbi4OImMjKzUeyuTlJQkt912\nm3V56tSp8txzz1W4z7Rp08r1OboQrckqpZQ6y7lG/IPzj/qXmJhI+/btrTXfpk2bUqdOHerVq0fT\npk05evQoIsLhw4fx9PQE4JprriEwMJA6dc5fFH3yySf07duX+vXrV5jl9FEDL4b81T5dlq1Zs2aA\nUWMfOHAgQUFBdO3alS1btlj32bx5MzfddBP+/v68//77FR5fC9lq5ixtNJrTtjSnbWlOx3G+Uf92\n7tyJi4sLvXv3pmPHjsyYMQOAOnXqEBMTg8ViwdPTk59++okxY8ZU+u/FxcUxfPjwc24716iBhYWF\nF/V+vvnmGzp06MA111zD2rVrrdmee+45OnbsyObNm3n55ZcZOXIkYBTGP/74I0lJSfzvf//jhRde\nID8//7zH10JWKaVUlZw+6l9JSQnffvstH330Ed9++y2ffvopa9eu5fDhwzz88MNs3ryZPXv2EBgY\nyPTp0yt1/Pz8fLZu3Vqt4yR069aNTZs2kZOTQ1RUFJMnTwbgu+++Y8SIEQDccsstFBQUcOTIEVxc\nXBg4cCCXX3457u7u3HLLLaxfv/68x9dCtpqFhoaaHaFSNKdtaU7b0pyO43yj/rVu3Zru3bvTrFkz\nGjRoQN++fdm4cSM7duygTZs2tGnTBoChQ4fy/fffn3Xcc41Fv2TJEgYNGkTdunXPmeVcowaW3e4t\nM2fOHDp06MANN9xgzX0+t912G6mpqdZlqeSjThXd7tZCVimlVKWdb9S/iIgItmzZwvHjxykpKSEl\nJYXrr7+ea6+9lh07dnDgwAEAVq9eTbt27codU84zrvLixYvPe6v4zCynjxp4ugcffJBNmzaxceNG\nWrZsWeF7+/bbb/H19QWMGu6HH34IGM0AV155JVdccQUiwooVKyguLqagoIDk5GQ6dep0/oNeVFcs\nB+MM8Z1hBBgRzWlrmtO2NKftVPa6WTbi32WXXWYd8U9Ezjvqn4jIokWL5PrrrxeLxWLtdSwiMn/+\nfLFYLNK+fXvp37+/FBYWiojI+vXrxcvLSxo2bCju7u7lejJnZWWJl5fXWbmeffZZWblypYhUPGpg\nZSQnJ0uTJk0kODhYgoKCpEePHpKZmSkiRq/mgQMHSvv27aVr166yZcsWETF6F48cOVK6du0qfn5+\n8v7771f4N5x+xKcPPhCiosxOcn7JyclOcQtJc9qW5rQtzWk7OuKTfTl9Idu8uZCcDNdfb3YapZRy\nfFrI2pfTt8m++ioMGwbHjpmdRCmllCrP6QvZ0aOhUyd46CGzk5ybszw3pzltS3PaluZUzsrpC1mA\n2bNh/XqYN8/sJEoppdTfnL5Ntiz+tm0QGoq2zyqlVAW0Tda+akRNFoyCdcYMGDpU22eVUko5hgoL\n2XNNdVSVaY4yMjIIDAzEz8+PiRMnWl9f0TRF8+fPx9/fH39/fxYsWFCpNxMVBSEh8OCD4Chf1Jyl\njUZz2pbmtC3NqZxVhYXs6NGjSUhIKLcuOjqa8PBwdu7cSVhYGNHR0YAxpNWIESN499132bp1Kykp\nKdSrVw+AcePGERsbS2ZmJpmZmdZjxsbG4u7uTmZmJpMmTWLKlCmAUZC/8MILrF+/nvXr1/P888+X\nK8wrMns2pKdr+6xSSinz1atoY7du3cjOzi63buXKlaSkpADGNEehoaFER0efc5ojMMa2PHLkCCEh\nIQCMHDmS5cuX07t3b1auXMnzzz8PGNMUjR8/HoBVq1YRERGBm5sbAOHh4SQkJHDHHXeclTEqKgpv\nb28A3NzcCA4O5pNPQunRAyCZNm3+Hk+07FumvZfLmPX3K7McGhrqUHkqWi7jKHn0fFb/sp7PS8uT\nnJx81rVc2ccFOz5lZ2dz2223WefSa9q0KUVFRYAx3mSzZs0oKiri9ddfZ+PGjfz+++/s37+fO+64\ng8mTJ5Oens7UqVNZvXo1YEwr9Oqrr/LZZ58RGBjIqlWruOqqqwDw9fUlLS2NefPmceLECZ566ikA\nXnrpJRo0aMBjjz1WPnwFDfjz50N0NGzYAI0aXcIZUkqpGkQ7PtnXJXV8qsw0R+eaWcEeRo2CLl3M\nb58989uto9KctqU5bUtzKmd10YXsxU5z5OnpSW5urnX/3NxcvLy8gHNPU+Tu7o6npye7d++27rN7\n927rPhfjrbcgIwM++OCid1VKKaUu2UUXshc7zVHLli1p3LgxaWlpiAgLFy5kwIABZx3r9GmKIiIi\nSExM5ODBgxQVFbF69eoqTdrbsCF88glMmQJ/3e22u7L2EUenOW1Lc9qW5lROq6IpesqmOnJ1dbVO\ndVSVaY7S09PFYrGIj4+PTJgwwbq+ommK5s6dK76+vuLr6yvz5s07Z74LxLeaP18kIEDkyJFKvVwp\npWqsyl43lW3UmBGfLmTMGPjzT1iwAOzZTJzsBFNfgea0Nc1pW5rTdrTjk33VmBGfLuStt2DTJm2f\nVUopZT+1piYLsH079OgBa9fCaYNYKaVUraE1WfuqNTVZgHbtYNYsY3zjo0fNTqOUUqqmq1WFLMDI\nkfDPf8K4cfZ5ftZZnpvTnLalOW1LcypnVesKWYA33zTaZ+fONTuJUkqpmqxWtcme7qefoHt3bZ9V\nStUu2iZrX7WyJgtw3XXaPquUUqp61dpCFv5un33ggeprn3WWNhrNaVua07Y0p3JWtbqQBaN9dvNm\niI01O4lSSqmapta2yZ5uxw7o1g3WrIH27W0QTCmlHJS2ydpXra/JAgQEwGuvwbBhcOSI2WmUUkrV\nFFrI/uXuu+Hmm23fPussbTSa07Y0p21pTuWstJA9zRtvwI8/wvvvm51EKaVUTaBtsmcoa5/9+msI\nCrLpoZVSynTaJmtfWpM9Q0AAvP66ts8qpZS6dBUWsmPGjMHDw4PA04ZEKiwsJDw8HH9/fyIiIjh4\n8GC5fXJycmjUqBGzZs2yrsvIyCAwMBA/Pz8mTpxoXV9cXExkZCR+fn506dKFXbt2WbfNnz8ff39/\n/P39WbBgwSW/0Ytx113GaFD333/p7bPO0kajOW1Lc9qW5lTOqsJCdvTo0SQkJJRbFx0dTXh4ODt3\n7iQsLIzo6Ohy2x999FFuvfXWcuvGjRtHbGwsmZmZZGZmWo8ZGxuLu7s7mZmZTJo0iSlTpgBGQf7C\nCy+wfv161q9fz/PPP39WYV7d3ngDtm7V9lmllFJVd8E22ezsbG677Ta2bNkCQEBAACkpKXh4eLB3\n715CQ0PZsWMHAMuXL+f777+nYcOGNGrUiMcee4z8/Hz+9a9/8dNPPwEQFxdHcnIy77zzDr179+b5\n55+nc+fOlJSU0KpVK/bv38/ixYtJTU3l7bffBuCBBx4gNDSUO+64o3z4am5b0PZZpVRNo22y9lXv\nYnfYt28fHh4eAHh4eLBv3z4Ajh49yquvvsrXX3/NjBkzrK/Py8vDy8vLuuzp6UleXp51W+vWrY0g\n9erRpEkTCgoK2LNnT7l9vLy8rPucKSoqCm9vbwDc3NwIDg4mNDQU+PvWTVWX9+5N5v77YejQUDIy\nICPj0o6ny7qsy7ps7+Wy37Ozs1EmkAvIysoSi8ViXXZzcyu3vWnTpiIi8thjj8mSJUtEROS5556T\nmTNniojIhg0bpGfPntbXp6amSr9+/URExGKxSF5ennWbj4+PHDhwQGbOnCkvvfSSdf2LL75oPd7p\nKhHfJu69V2T4cJHS0ovfNykpyeZ5qoPmtC3NaVua03bsdd1UhouuyZbdJm7ZsiX5+fm0aNECgPXr\n17N06VKeeOIJDh48SJ06dWjQoAGDBg0iNzfXun9ubq61lurp6UlOTg5XXXUVJSUlHDp0CHd3dzw9\nPct9C9u9ezf/+te/LunLxKWIiYHOneG99+C++0yLoZRSytlcqBQ+syY7efJkiY6OFhGR6dOny5Qp\nU87aZ9q0aTJr1izrckhIiKxbt05KS0ulT58+8tVXX4mIyOzZs+WBBx4QEZHFixdLZGSkiIgUFBRI\nmzZtpKioSAoLC62/n6kS8W1mxw6R5s1FfvjBbn9SKaVszp7XTXWBmuzw4cNJSUnhwIEDtG7dmhde\neIEnn3ySYcOGERsbi7e3N0uWLLlgQT5nzhyioqI4fvw4ffv2pXfv3gCMHTuWESNG4Ofnh7u7O3Fx\ncQA0a9aMZ555hk6dOgHw3HPP4ebmdmnfJi5R27bG87NDh0JGBlxxhalxlFJKOQEd8eki3XefMUjF\nRx+Bi8uFX5+cnGztiODINKdtaU7b0py2o72L7UtHfLpIMTGwfTu8+67ZSZRSSjk6rclWwc8/GzP2\nrF4NwcF2//NKKVVlWpO1L63JVkHbtsaIUMOGweHDZqdRSinlqLSQraLhw+GWW4w22oq+FJ7+KJIj\n05y2pTltS3MqZ6WF7CV4/XX46Sf473/NTqKUUsoRaZvsJdq5E/75T0hMhA4dTI2ilFIX5AjXzdpE\na7KXyN9f22eVUkqdmxayNjB8OISFnbt91lnaaDSnbWlO29KcyllpIWsjr71mTI2n7bNKKaXKaJus\nDWn7rFLK0TnadbOm05qsDfn7w5tvGuMba/usUkopLWRt7I47IDwc7r3XaJ91ljYazWlbmtO2NKdy\nVlrIVoPXXjOGXnznHbOTKKWUMpO2yVaTzEy46SZtn1VKORZHvm7WRFqTrSZ+fn+3zx46ZHYapZRS\nZtBCthrdcQdcf32ytX3WkTlLW5LmtC3NaVvOklPZT4WF7JgxY/Dw8CAwMNC6rrCwkPDwcPz9/YmI\niODgwYMArF69mhtvvJH27dtz4403kpSUZN0nIyODwMBA/Pz8mDhxonV9cXExkZGR+Pn50aVLF3bt\n2mXdNn/+fPz9/fH392fBggU2e8P29tBDxq3jt982O4lSqrYqLYVVq6BfP7OT1EJSgdTUVNm4caNY\nLBbrusmTJ8srr7wiIiLR0dEyZcoUERHZtGmT5Ofni4jI1q1bxdPT07pPp06dJC0tTURE+vTpI199\n9ZWIiMyePVvGjRsnIiJxcXESGRkpIiIFBQVy7bXXSlFRkRQVFVl/P9MF4juMnTtFmjcXycgwO4lS\nqjY5fFjkzTdF/P1F2rcXee8957lu1hQXPNtZWVnlCtm2bdvK3r17RUQkPz9f2rZte9Y+paWl0qxZ\nMzl58qTs2bNHAgICrNsWL14s999/v4iI9OrVS9atWyciIn/++ac0b95cREQ++ugjeeCBB6z73H//\n/bJ48eKzwzvRhyUuTsTHR+TgQbOTKKVqup9/FpkwQaRpU5EhQ0RSUkRKS41tznTdrAnqXWzNd9++\nfXh4eADg4eHBvn37znrN0qVL6dixI66uruTl5eHl5WXd5unpSV5eHgB5eXm0bt0agHr16tGkSRMK\nCgrYs2dPuX28vLys+5wpKioKb29vANzc3AgODiY0NBT4u33EzOUffviBRx55hMhI+OijZAYMgKSk\nUFxcHCNf2fLpbUmOkOd8y2Xn01HynG9Zz6eeT3v//bVrk1m/HlJSQsnIgIiIZN55B1q0MLbNnZuN\nMsGFSuEza7Jubm7ltjdt2rTc8tatW8XHx0d+++03ERHZsGGD9OzZ07o9NTVV+vXrJyIiFotF8vLy\nrNt8fHzkwIEDMnPmTHnppZes61988UWZOXPmWdkqEd90SUlJ1t+PHxfp0EHkrbfMy3M+p+d0ZJrT\ntjSnbZmR8+BBkddeE/H1Na4vH3xgXGvOxxmumzXJRfcu9vDwYO/evQDk5+fTokUL67bc3FwGDRrE\nwoULadOmDWDUXHNzc8u9pqyW6unpSU5ODgAlJSUcOnQId3d3PD092b17t3Wf3bt3l6vZOpOyb5kA\n9evDkiUwbRpkZJgW6ZxOz+nINKdtaU7bsmfOn34yOlZ6e8O6dTBvnnFdiYoyrjXKMVx0Idu/f3/m\nz58PGD2ABw4cCMDBgwe59dZbeeWVV+jatav19a1ataJx48akpaUhIixcuJABAwacdaz4+HjCwsIA\niIiIIDExkYMHD1JUVMTq1avp1avXpb1TB+HrC7NnG/PP6vOzSqmLceoUfPYZRETALbeAuzts3Qpx\nccbkJC4uZidUZ6momnvHHXdIq1atxNXVVby8vGTu3LlSUFAgYWFh4ufnJ+Hh4dZevy+++KI0bNhQ\ngoODrT/79+8XEZH09HSxWCzi4+MjEyZMsB7/xIkTMnToUPH19ZXOnTtLVlaWddvcuXPF19dXfH19\nZd68eefMd4H4DuF8t48efNDokFDWGcFsejvOtjSnbdX2nIWFIjNnirRpI9Kpk8iCBSInTlTtWM5w\n3axJKuz4tHjx4nOu//rrr89a9/TTT/P000+f8/UdO3Zky5YtZ62//PLLWbJkyTn3GT16NKNHj64o\nnlObNcsYdnHOHOOWj1JKnWnrVnjrLfj4Y+jbFxYvhs6dzU6lLoaOXWyiX36Brl0hIQE6djQ7jVLK\nEZw6BStXGsOy7tgB999v/LRsaZvjO/t109loIWuyTz6BJ580Oiy4uZmdRilllsJCeP994+5Wq1Yw\nYQIMGQKXXWbbv1MTrpvORMcurmanP993LkOHQp8+cM895o5vfKGcjkJz2pbmtK2q5PzxR2P+aR8f\n4/bwJ5/A//4Hd95p+wJW2Z8Wsg5g5kzIyjJ6HSular6SEoiPhx49jC/Z11xjzEG9YAF06mR2OmVL\nervYQfz6q9E+++WXcOONZqdRSlWHAwfgvfeMCUOuvtq4JTxoELi62i9DTbpuOgOtyToIHx+jJhsZ\nCX9NbKSUqiE2bYIxY4x5pjMzYcUK+PZb4/93exawyv60kK1mF9NGU9Y+O3as/dtna3Kblxk0p205\nY84//zQevbn5Zujf/+8Cdu5c6NDBvIzKvrSQdTCzZkF2tvFsnFLK+fz+O7z0ErRpY/QUfuQRo8/F\n1KnQvLnZ6ZS9aZusA9L2WaWcz4YNxrOtn31mPHozfjwEBZmd6mw19brpqLQm64B8fIxvwMOGafus\nUo7s5En46CPjS/HQoWCxGIPMvPeeYxawyv60kK1mVW1LGjIEbr3V6Cxhjy+dztjm5cg0p205Ws69\ne+H5540ZcGJjYcoU4w5USEgy7u5mp1OORAtZBzZzJuTkGLeglFLmS0uDu+6C666D/HxITIQ1a2Dg\nQKhb1+x0yhFpm6yD++036NIFvvhCH1JXygzFxcY80G++aTznOn48jB4NTZuanaxqasN105FoIesE\nli6FyZNh40Yd31gpe9mzB955B959F9q3NwaO6NvX+WusteW66Sj0dnE1s0Vb0uDB0K9f9bbPOlqb\n1/loTtvSnOWJwPffwx13GJ2YCgogKcm4LXzbbRcuYJ3lfCr70ULWScyYoe2zSlWXEydg3jzjkblR\no4zewmXjiV93ndnplFOraEb30aNHS4sWLcRisVjXFRQUSM+ePcXPz0/Cw8OlqKjIuu3ll18WX19f\nadu2raxatcq6Pj09XSwWi/j6+srDDz9sXX/ixAkZNmyY+Pr6SufOnSU7O9u6bd68eeLn5yd+fn4y\nf/78c+a7QPwa59dfRa68UiQtzewkStUMOTkiU6ca/1/17i3yxRcip06Znap61bbrptkqPNupqamy\ncePGcoXs5MmT5ZVXXhERkejoaJkyZYqIiGzbtk2CgoLk5MmTkpWVJT4+PlJaWioiIp06dZK0v0qG\nPn36yFdffSUiIrNnz5Zx48aJiEhcXJxERkaKiFGQX3vttVJUVCRFRUXW388KXws/LEuXinh7ixQW\nmp1EKedUWiqSmioyZIhI06YiDz8s8vPPZqeyn9p43TRThbeLu3XrRtMzutCtXLmSUaNGATBq1CiW\nL18OwIoVKxg+fDiurq54e3vj6+tLWloa+fn5HDlyhJCQEABGjhxp3ef0Yw0ePJg1a9YAsGrVKiIi\nInBzc8PNzY3w8HASEhJsVHe3L1u30QwaZIyDauv2WWdpS9KctlWbch4/bjzT2qGDMX9rjx6waxfE\nxIC//6VnBOc5n8p+6l3sDvv27cPDwwMADw8P9u3bB8CePXvo0qWL9XVeXl7k5eXh6uqKl5eXdb2n\npyd5eXkA5OXl0bp1ayNIvXo0adKEgoIC9uzZU26fsmOdS1RUFN7e3gC4ubkRHBxMaGgo8PcH3szl\nH374webHf/XVUG6+GR5+OJnBg819f/Zero7zWZuXa8P5bNMmlDlz4L//Tea66+CVV0IJD4fU1GQy\nMmr++Sz7PTs7G2WCC1V1s7Kyyt0udnNzK7e9adOmIiIyfvx4WbRokXX92LFjJT4+XtLT06Vnz57W\n9ampqdKvXz8REbFYLJKXl2fd5uPjIwcOHJCZM2fKSy+9ZF3/4osvysyZM8/KVon4NZa2zyp1fqWl\nImvXitx+u0izZiKTJolkZpqdyjHU5uumGS66d7GHhwd79+4FID8/nxYtWgBGDXX37t3W1+Xm5uLl\n5YWnpye5ublnrS/bJycnB4CSkhIOHTqEu7v7WcfavXt3uZqtgmuvNZ7hi4yEoiKz0yjlGI4d+/u5\n1ocegvBw45bwf/4Dvr5mp1O10UUXsv3792f+/PkAzJ8/n4EDB1rXx8XFcfLkSbKyssjMzCQkJISW\nLVvSuHFj0tLSEBEWLlzIgAEDzjpWfHw8YWFhAERERJCYmMjBgwcpKipi9erV9OrVyyZv2N5Ov2Vj\na2Xts6NHX3r7bHXmtCXNaVs1JWdWFjz+OFxzjTE62uuvw7ZtMG4cNGpkn4zgPOdT2U+FbbLDhw8n\nJSWFAwcO0Lp1a1544QWefPJJhg0bRmxsLN7e3ixZsgSAdu3aMWzYMNq1a0e9evWYM2cOLi4uAMyZ\nM4eoqCiOHz9O37596d27NwBjx45lxIgR+Pn54e7uTlxcHADNmjXjmWeeodNf4wg+99xzuOlQR+c0\nY4YxKXRMjDFvpVK1hYgxbvCbb8J33xlfNjdsMOZxVcpR6LCKNUBWFnTuDJ9/Dn914laqxjp6FBYu\nNArXunWN4Q7vugsaNjQ7mXPQ66Z9aSFbQ3z6KTz6qDG+sbMOXK5URX75xRiBacEC4/Gbhx82/vvX\nDTNVSXrdtC8dVrGa2auN5vbbYcCAqrfPOktbkua0LWfIeeoUhIcn07UrXH658UVy2TIIDXW8AtYZ\nzqeyLy1ka5BXXzVmDnn9dbOTKGU7zz5r9KDPyYHoaKNzk1LOQm8X1zBl7bOffWb8Vyln9tlnxqM4\nGRlw5ZVmp6kZ9LppX1qTrWHatDGeE4yMhMJCs9MoVXW//Qb33GNMmK4FrHJWWshWMzPaaAYONNpo\nL6Z91lljON67AAAgAElEQVTakjSnbTlqzuPHjXmUn3kGunRx3Jxncpacyn60kK2hXnkF8vPhtdfM\nTqLUxRs/3pjH9aGHzE6i1KXRNtkaLDvbeG525UqjNqCUM4iNNYZBTEuz72hNtYVeN+1LC9kabsUK\nmDjReOyhWTOz0yhVsY0boVcv+OYbCAgwO03NpNdN+9LbxdXM7DaaAQOMMY6joipunzU7Z2VpTtty\npJxFRTBkCMyZc3YB60g5K+IsOZX9aCFbC0RHw7592j6rHFdpKYwcaXTaGzrU7DRK2Y7eLq4lsrON\n52ZXrND2WeV4Xn4ZvvwSkpLA1dXsNDWbXjftSwvZWkTbZ5Uj+vproxa7YQN4epqdpubT66Z96e3i\nauZIbTQDBhjPHo4adXb7rCPlrIjmtC2zc+bmwogR8OGHFRewZuesLGfJqexHC9laZvp02L/feERC\nKTOdPGm0vz7yCNxyi9lplKoeeru4Ftq1y3h+dvly6NrV7DSqtnr4YWPQ/08/dbzZdGoyvW7aV5Vr\nsjExMQQGBmKxWIiJiQFg/fr1hISE0KFDBzp16sSGDRusr58+fTp+fn4EBASQmJhoXZ+RkUFgYCB+\nfn5MnDjRur64uJjIyEj8/Pzo0qULu3btqmpUdYZrroH33oM77tDxjZU5Fi82OjrNm6cFrKrhpAq2\nbNkiFotFjh8/LiUlJdKzZ0/55ZdfpEePHpKQkCAiIl9++aWEhoaKiMi2bdskKChITp48KVlZWeLj\n4yOlpaUiItKpUydJS0sTEZE+ffrIV199JSIis2fPlnHjxomISFxcnERGRp6Vo4rx7SopKcnsCOf1\n6KMi/fqJnDrl2DlPpzlty4yc27aJNG8u8sMPld9Hz6ftOMN1syapUk12x44ddO7cmfr161O3bl16\n9OjBsmXLuOqqqzh06BAABw8exPOvngwrVqxg+PDhuLq64u3tja+vL2lpaeTn53PkyBFCQkIAGDly\nJMuXLwdg5cqVjBo1CoDBgwezZs2aS/w6oc6k7bPK3o4cMTrfzZgBQUFmp1Gq+tWryk4Wi4WnnnqK\nwsJC6tevzxdffEFISAjR0dHcdNNNPP7445SWlvK///0PgD179tDltIczvby8yMvLw9XVFS8vL+t6\nT09P8vLyAMjLy6N169ZGyHr1aNKkCYWFhTQ749mTqKgovL29AXBzcyM4OJjQ0FDg755+Zi+XcZQ8\nZcvff5/MpEnw8MOhfPppqOl5nP18nr4cGqrn88zlpKRkXngBunULJSpKz6c98yQnJ5OdnY2yvyp3\nfJo7dy5z5syhYcOGXH/99Vx++eVs3bqVBx98kNtvv51PPvmEd999l9WrVzNhwgS6dOnCXXfdBcA9\n99xDnz598Pb25sknn2T16tUAfPPNN7z66qt89tlnBAYGsmrVKq666ioAfH19Wb9+fblCVhvwbeOz\nz4xZTzZuBHd3s9OomiomBhYsgO++g/r1zU5Te+l1076q3PFpzJgxpKenk5KSQtOmTfH39yctLY3b\nb78dgCFDhrB+/XrAqKHu3r3bum9ubi5eXl54enqSm5t71vqyfXJycgAoKSnh0KFDZ9VincGZ324d\n0W23QZcuydx1F/z5p9lpKuYM5xM055m++84Y1Sk+vmoFrJ5P5ayqXMj+/vvvAOTk5LBs2TLuvPNO\nfH19SUlJAWDt2rX4+/sD0L9/f+Li4jh58iRZWVlkZmYSEhJCy5Ytady4MWlpaYgICxcuZMCAAdZ9\n5s+fD0B8fDxhYWGX9EZVxe69Fy6/3BgY4NQps9OommTfPqMn+wcfQJs2ZqdRyr6qfLu4e/fuFBQU\n4OrqymuvvcYtt9xCeno6Dz30EMXFxTRo0IA5c+bQoUMHAF5++WXmzp1LvXr1iImJoVevXoDxCE9U\nVBTHjx+nb9++vPHGG4DxCM+IESPYtGkT7u7uxMXFWdtereH1todNnTgB/fr9/YhPHR2qRF2ikhKI\niICbb4YXXjA7jQK9btqbDkahyjl61JjPs1MnY9YefYZRXYqpUyEjA776CurWNTuNAr1u2pvWVaqZ\ns7TRlOVs1Ai++AJSUuDZZ83NdC7Odj4dXXXmXLkSPvrI+LnUAlbPp3JWVXqER9Vsbm6QmAjdu8MV\nV8ATT5idSDmbX3+Fe+4xeq43b252GqXMo7eL1Xnl5UG3bjB5MowbZ3Ya5SyOHzfGxL73XnjoIbPT\nqDPpddO+tJBVFfrtN+jRw3j8YsQIs9MoRycCY8YYM+wsWqRt+o5Ir5v2pW2y1cxZ2mjOl/Paa41b\nx088AcuW2TfTuTj7+XQ0ts4ZG2tMvv7uu7YtYGvr+VTOT9tk1QVdd50xY0rv3tCwodH7WKkzZWTA\nv/8N33xjfE6UUnq7WF2E77+HAQNg6VKjU5RSZQoLoWNHY+D/IUPMTqMqotdN+9JCVl2Ur7+GO+80\narY33mh2GuUISkuNoTkDAmDWLLPTqAvR66Z9aZtsNXOWNprK5uzZE95/3xgZauvW6s10LjXtfJrN\nFjlffhkOH4bo6EvPcz616XyqmkXbZNVF698fjh0z2maTk8HPz+xEyiyrV8OcOZCeDq6uZqdRyvHo\n7WJVZe+9B//3f0ZHl7+m/lW1yO7dEBICixfDX1OYKieg10370pqsqrJ77zXGOu7ZE1JTwcPD7ETK\nXk6ehKFDYdIkLWCVqoi2yVYzZ2mjqWrOSZPgrrsgPNzoYVrdavr5tLeq5nzsMWjVyhgNzB5q+vlU\nNZfWZNUle+YZo+NLnz5G7+MrrjA7kapOH30ECQlGO6yO6KRUxbRNVtmEiDG+8c8/G4/3NGhgdiJV\nHbZtM24Pr1kD7dubnUZVhV437UtvFyubcHExepl6esLgwUabnapZDh+GQYOMZ2G1gFWqcqpcyMbE\nxBAYGIjFYiEmJsa6/s033+S6667DYrEwZcoU6/rp06fj5+dHQEAAiYmJ1vUZGRkEBgbi5+fHxIkT\nreuLi4uJjIzEz8+PLl26sGvXrqpGNZWztNHYImedOvDBB3DZZUY7bUnJpec6U206n/ZQ2ZwiMHas\nUYsdObJaI51TTTufqvaoUiG7detW3n//fTZs2MDmzZv5/PPP+fXXX0lKSmLlypX8+OOPbN26lccf\nfxyA7du38/HHH7N9+3YSEhJ48MEHrbcrxo0bR2xsLJmZmWRmZpKQkABAbGws7u7uZGZmMmnSpHIF\ntnJcrq7w8cdw6JDR+7i01OxEyhZefx2ysuC079NKqUqoUsenHTt20LlzZ+rXrw9Ajx49WLZsGenp\n6UydOhXXv55Kv/LKKwFYsWIFw4cPx9XVFW9vb3x9fUlLS+Oaa67hyJEjhISEADBy5EiWL19O7969\nWblyJc8//zwAgwcPZvz48efMEhUVhbe3NwBubm4EBwcT+tczBWXfKs1eLuMoec61HBoaatPjffop\ndOmSzJAhsHRpKC4uej4ddbnM+bbXqxdKdDTExCSzbp2eT2f7fJb9np2djTKBVMFPP/0k/v7+UlBQ\nIMeOHZOuXbvKhAkTJDg4WJ577jnp3Lmz9OjRQzZs2CAiIuPHj5dFixZZ9x87dqzEx8dLenq69OzZ\n07o+NTVV+vXrJyIiFotF8vLyrNt8fHykoKCgXI4qxld2cvCgyA03iPz732YnUVW1d6+Ip6fIl1+a\nnUTZil437atKt4sDAgKYMmUKERER9OnTh+DgYOrWrUtJSQlFRUWsW7eOGTNmMGzYMNt+I3BCZ367\ndVTVkbNJE1i1CpYvt924trX5fFaHinKWlMAddxhtsX362C/TudSE86lqpyp3fBozZgzp6emkpKTQ\ntGlT/P398fLyYtCgQQB06tSJOnXqcODAATw9Pdm9e7d139zcXLy8vPD09CQ3N/es9QCenp7k5OQA\nUFJSwqFDh2jWrFlV4yqTNG9ujG/7/vvw1ltmp1EX4+mnjU5szz5rdhKlnFhVq8D79u0TEZFdu3ZJ\nQECAHDp0SN555x159tlnRUTk559/ltatW4uIyLZt2yQoKEiKi4vlt99+k2uvvVZKS0tFRCQkJETW\nrVsnpaWl0qdPH/nqq69ERGT27NnywAMPiIjI4sWLJTIy8qwMlxBf2VlWlkjr1iLz5pmdRFXGp5+K\nXH21yP79ZidRtqbXTfuq8ohPQ4YMoaCgAFdXV+bMmUPjxo0ZM2YMY8aMITAwkMsuu4wFCxYA0K5d\nO4YNG0a7du2oV68ec+bMweWvoWLmzJlDVFQUx48fp2/fvvTu3RuAsWPHMmLECPz8/HB3dycuLu6S\nv1Ao83h7Q2Ii/Otf0LChTuztyH75Be67Dz7/3LgToZSqOh3xqZolJydbe/s5Mnvl3LwZIiKM52n7\n9r34/fV82taZOf/4A7p2hfvvhwcfNC/XmZz1fDoiZ7hu1iQ64pOyq6AgWLECoqIgJcXsNOp0IkbB\nGhhoDJGplLp0WpNVpli71ui5+vnnxpykynzvvWcMNpGWZtzSVzWTXjftSwtZZZrPPzceD1m9WsfC\nNVt6unH7/ptvoG1bs9Oo6qTXTfvS28XVzFmemzMjZ79+8MYbxjOYO3dWbh89n7aVnJxMYaExAfvb\nbztuAetM51Op0+l8sspUkZFw7Jgx6XtqKlxzjdmJapfSUrj7bmPmpMGDzU6jVM2jt4uVQ4iJMQar\nSE2FVq3MTlN7vPiicbt+zRpjcgdV8+l10760JqscwsSJcOSI8XhPcjK4u5udqOZLTIR33jHaY7WA\nVap6aJtsNXOWNhpHyPnUU0bnm969jQnCz8URclaGo+fMyTHmhX3iiWSnuHPg6OezjLPkVPajhaxy\nGC4uxkQCnToZnaL++MPsRDVTcbHR0emxx4znlpVS1UfbZJXDKS01Bqv4/Xdj4IrLLzc7Uc0yfjzk\n5cGyZcYXG1W76HXTvrQmqxxOnTowd64xIMKddxpTrinb+PBDY/rBefO0gFXKHrSQrWbO0kbjaDnr\n1YOPPjIe7xkzxqjdguPlPB9HzLl1KzzyCCxdasz1C46Z81w0p3JWWsgqh3X55cYtzexsmDDBGFtX\nVc3hw8ZzsP/5j46upZQ9aZuscniHD0NYmPEzfbre5rxYIkZHpyuvNEZ1UrWbXjftS5+TVQ6vcWNI\nSIAePeCKK4xHfVTlvfYa7NpltMcqpeyryreLY2JiCAwMxGKxEBMTU27brFmzqFOnDoWFhdZ106dP\nx8/Pj4CAABITE63rMzIyCAwMxM/Pj4kTJ1rXFxcXExkZiZ+fH126dGHXrl1VjWoqZ2mjcfSc7u7G\nyERvv53MG2+YnebCHOV8fvMNvPIKfPLJuXtpO0rOC9GcyllVqZDdunUr77//Phs2bGDz5s18/vnn\n/PrrrwDs3r2b1atXc81pg9Bu376djz/+mO3bt5OQkMCDDz5ovV0xbtw4YmNjyczMJDMzk4SEBABi\nY2Nxd3cnMzOTSZMmMWXKlEt9r8rJtWoFs2YZP3Pnmp3G8e3da0wnOH8+eHubnUap2qlKheyOHTvo\n3Lkz9evXp27duvTo0YNly5YB8Oijj/Lqq6+We/2KFSsYPnw4rq6ueHt74+vrS1paGvn5+Rw5coSQ\nvyYUHTlyJMuXLwdg5cqVjBo1CoDBgwezZs2aKr9JM4WGhpodoVKcJWdkZCirV8PTT8OSJWanOT+z\nz2dJiVHA3nuvMYLW+Zids7I0p3JWVWqTtVgsPPXUUxQWFlK/fn2+/PJLbrzxRlasWIGXlxftz+i+\nuGfPHrp06WJd9vLyIi8vD1dXV7y8vKzrPT09ycvLAyAvL4/WrVsbIevVo0mTJhQWFtKsWbNyx46K\nisL7r6/pbm5uBAcHWz/oZbdudLnmLRtttMn8+itMnWp+Hkdbfuop+OOPZLp3BzA/jy6bt1z2e3Z2\nNsoEUkWxsbHSsWNH6d69u4wbN07uu+8+6dy5sxw6dEhERLy9veXAgQMiIjJ+/HhZtGiRdd+xY8dK\nfHy8pKenS8+ePa3rU1NTpV+/fiIiYrFYJC8vz7rNx8dHCgoKymW4hPh2k5SUZHaESnHGnOvWiTRv\nLrJ2rXl5zsfM87lsmcg114js33/h1zrjv7sjc4acznDdrEmq3PFpzJgxpKenk5KSQtOmTbn++uvJ\nysoiKCiINm3akJubS8eOHdm3bx+enp7s3r3bum9ubi5eXl54enqSm5t71nowarU5OTkAlJSUcOjQ\nobNqsap269zZ6NATGQnr1pmdxjFkZsL99xvnpXlzs9Mopar8lWbfvn0iIrJr1y4JCAiw1mDLeHt7\nW2ue27Ztk6CgICkuLpbffvtNrr32WiktLRURkZCQEFm3bp2UlpZKnz595KuvvhIRkdmzZ8sDDzwg\nIiKLFy+WyMjIszJcQnxVg3zxhUiLFiKbNpmdxFzHjokEBoq8/bbZSZQj0+umfVX5OdkhQ4ZQUFCA\nq6src+bMoXHjxuW2u5w2YkC7du0YNmwY7dq1o169esyZM8e6fc6cOURFRXH8+HH69u1L7796aYwd\nO5YRI0bg5+eHu7s7cXFxVY2qari+fY0J3/v2haQkaNvW7ET2JwIPPGDMqnP//WanUUpZmV3KXwpn\niO8MbTQiNSPnBx+ItG4tkpVlrzTnZ+/z+c47IhaLyNGjF7dfTfh3dyTOkNMZrps1iY74pGqMqCg4\nehR69oTUVLjqKrMT2Ud6OjzzDHz7rTFzkVLKcejYxarGmT4dFi2ClJSa3/mnoABuvNEYoGPQILPT\nKGeg10370kJW1UhTp0JiIqxd+/e0bjVNaSnceitYLDBjhtlplLPQ66Z96VR31ez0B8IdWU3L+fLL\ncNNNRiF07Fj1ZjoXe5zPl16CP/4wau5VVdP+3c3mLDmV/Wghq2okFxeIiQFfX7j9diguNjuRba1a\nBf/9L8TFGRPcK6Uck94uVjVa2Ri+p04ZYx27upqd6NLt2mUMxLFkCX8Nm6hU5el10760JqtqtHr1\n4KOPjJrs6NFGO6YzKy42JmB//HEtYJVyBlrIVjNnaaOpyTkvuwyWLoXcXHjwQWPghupWXedz0iRo\n3Roee8w2x6vJ/+5mcJacyn60kFW1QoMGsHIlbNwITzxhn4LW1hYtgq+/NubSPW1ANaWUA9M2WVWr\nFBZCaCgMGQLPPmt2msrbsgX+9S/jkaTAQLPTKGem10370n6JqlZp1sx4frZ7d7jiCuP2q6M7fBgG\nD4bXXtMCVilno7eLq5mztNHUppwtWxq3XWNi4P33Lz3TudjqfIoYHbZ69oS777bJIcupTf/u9uAs\nOZX9aE1W1UpXXw2rVxu3jhs2hOHDzU50bv/5D+zebfSQVko5H22TVbXa1q1GLfHdd6F/f7PTlJea\nCsOGQVoaXHON2WlUTaHXTfvS28WqVrNY4LPP4J57YM0as9P8LT/fqF3Pm6cFrFLOTAvZauYsbTS1\nOWenThAfb4wM9f33tjnmpeT880+IjIT77oPevW2T53xq8797dXCWnMp+qlzIxsTEEBgYiMViISYm\nBoDJkydz3XXXERQUxKBBgzh06JD19dOnT8fPz4+AgAASExOt6zMyMggMDMTPz4+JEyda1xcXFxMZ\nGYmfnx9dunRh165dVY2q1AV17w4LF8LAgbBpk7lZ/v1vo534mWfMzaGUsoGqzPS+ZcsWsVgscvz4\ncSkpKZGePXvKL7/8IomJiXLq1CkREZkyZYpMmTJFRES2bdsmQUFBcvLkScnKyhIfHx8pLS0VEZFO\nnTpJWlqaiIj06dNHvvrqKxERmT17towbN05EROLi4iQyMvKsHFWMr9R5xceLtGwpsn27OX9/6VKR\na64ROXDAnL+vaj69btpXlWqyO3bsoHPnztSvX5+6devSo0cPli1bRnh4OHXqGIfs3Lkzubm5AKxY\nsYLhw4fj6uqKt7c3vr6+pKWlkZ+fz5EjRwgJCQFg5MiRLF++HICVK1cyatQoAAYPHswaR2owUzXW\n4MHwyisQEQG//Wbfv71zJzzwAHzyCbi72/dvK6WqR5Ue4bFYLDz11FMUFhZSv359vvjiC2tBWWbu\n3LkM/+u5iD179tClSxfrNi8vL/Ly8nB1dcXLy8u63tPTk7y8PADy8vJo3bq1EbJePZo0aUJhYSHN\nmjUr93eioqLw9vYGwM3NjeDgYEJDQ4G/20fMXP7hhx945JFHHCbP+ZZPb0tyhDznW7bH+Rw5MpSj\nR+Gf/0zmzTdhyJCLP97Fns9jx6B372RGjIBOnWz7fsw+n/r5NDdf2e/Z2dkoE1S1ChwbGysdO3aU\n7t27y7hx4+SRRx6xbnvppZdk0KBB1uXx48fLokWLrMtjx46V+Ph4SU9Pl549e1rXp6amSr9+/URE\nxGKxSF5ennWbj4+PFBQUlMtwCfHtJikpyewIlaI5zxYdLRIQIPL77xe/78XkLC0VuftukZEjjd/t\nSf/dbcsZcjrDdbMmqXLHpzFjxpCenk5KSgpubm60bdsWgHnz5vHll1/y4YcfWl/r6enJ7t27rcu5\nubl4eXnh6elpvaV8+vqyfXJycgAoKSnh0KFDZ9VinUHZt0pHpznPNmWKcfs4IgIOHry4fS8m53//\nC5s3w9tv23/gf/13ty1nyansp8qF7O+//w5ATk4On376KXfeeScJCQnMmDGDFStWUL9+fetr+/fv\nT1xcHCdPniQrK4vMzExCQkJo2bIljRs3Ji0tDRFh4cKFDBgwwLrP/PnzAYiPjycsLOxS3qdSVfLi\ni0bP47594ehR2x9//XpjooKlS+Ef/7D98ZVSJqtqFbhbt27Srl07CQoKkrVr14qIiK+vr1x99dUS\nHBwswcHB1t7BIiL/93//Jz4+PtK2bVtJSEiwrk9PTxeLxSI+Pj4yYcIE6/oTJ07I0KFDxdfXVzp3\n7ixZWVlnZbiE+HbjDLePRDRnRU6dEhk9WiQsTOT48crtU5mc+/eLXH21yLJll5bvUui/u205Q05n\nuG7WJFUeuzg1NfWsdZmZmed9/b///W/+/e9/n7W+Y8eObNmy5az1l19+OUuWLKlqPKVspk4deO89\nuPNOY5jDpUvB1fXSjnnqFNx1lzHoxO232yanUsrx6NjFSlXSyZMwaBA0bmwMXFG3btWPNW0aJCUZ\nQznW02k6lB3pddO+tJBV6iIcPw633go+PsakAlXpqJSQYIyVnJ5uTLunlD3pddO+dOzianb6s2qO\nTHNWToMGsGIFbNkCjz1mzPd6LufLuWsXREXB4sWOUcCafT4rS3MqZ6WFrFIX6Yor4KuvjFu9zz9f\n+f2Ki2HIEHjiCejWrfryKaUch94uVqqK9u2DHj3g3nuNWu2FjBsH+/cbwyba+3lYpcroddO+tMuF\nUlXk4QGrVxvP0TZqBPfff/7XLlgAa9fChg1awCpVm+jt4mrmLG00mrNqWreGr782Bq04bZCzcjl/\n/NGo6S5davRMdiSOdj7PR3MqZ6U1WaUukY8PrFoFYWHGPLADB/697dAhY2jG118Hi8W8jEopc2ib\nrFI2kpEBffoYNdrwcKPn8aBBcNVVMHu22emUMuh10760kFXKhr791hjB6dNPYd06o5NTaipcfrnZ\nyZQy6HXTvrRNtpo5SxuN5rSNm282arL9+iUzc6ZRyDpyAevo57OM5lTOSttklbKxiAh45hm46Sa4\n+mqz0yilzKS3i5VSqhbR66Z96e1ipZRSqppoIVvNnKWNRnPalua0Lc2pnJUWstXshx9+MDtCpWhO\n29KctqU5lbOqciEbExNDYGAgFouFmJgYAAoLCwkPD8ff35+IiAgOHjxoff306dPx8/MjICCAxMRE\n6/qMjAwCAwPx8/Nj4sSJ1vXFxcVERkbi5+dHly5d2LVrV1Wjmur0c+DINKdtaU7b0pzKWVWpkN26\ndSvvv/8+GzZsYPPmzXz++ef8+uuvREdHEx4ezs6dOwkLCyM6OhqA7du38/HHH7N9+3YSEhJ48MEH\nrQ3v48aNIzY2lszMTDIzM0lISAAgNjYWd3d3MjMzmTRpElOmTLHRW1ZKKaXso0qF7I4dO+jcuTP1\n69enbt269OjRg6VLl7Jy5UpGjRoFwKhRo1i+fDkAK1asYPjw4bi6uuLt7Y2vry9paWnk5+dz5MgR\nQkJCABg5cqR1n9OPNXjwYNasWXPJb9YM2dnZZkeoFM1pW5rTtjSnclpSBT/99JP4+/tLQUGBHDt2\nTLp27SoTJkwQNzc362tKS0uty+PHj5dFixZZt40dO1bi4+MlPT1devbsaV2fmpoq/fr1ExERi8Ui\neXl51m0+Pj5SUFBQLgegP/qjP/qjPxf5o+ynSoNRBAQEMGXKFCIiImjYsCHBwcHUrVu33GtcXFxw\nqeY5vUSf9VJKKeXAqtzxacyYMaSnp5OSkkLTpk3x9/fHw8ODvXv3ApCfn0+LFi0A8PT0ZPfu3dZ9\nc3Nz8fLywtPTk9zc3LPWl+2Tk5MDQElJCYcOHaJZs2ZVjauUUkrZXZUL2d9//x2AnJwcli1bxp13\n3kn//v2ZP38+APPnz2fgX3N+9e/fn7i4OE6ePElWVhaZmZmEhITQsmVLGjduTFpaGiLCwoULGTBg\ngHWfsmPFx8cTFhZ2SW9UKaWUsrcqD6vYvXt3CgoKcHV15bXXXuOWW26hsLCQYcOGkZOTg7e3N0uW\nLMHNzQ2Al19+mblz51KvXj1iYmLo1asXYDzCExUVxfHjx+nbty9vvPEGYDzCM2LECDZt2oS7uztx\ncXF4e3vb5l0rpZRS9mBuk/D51alTR4KDgyUoKEhuuOEG+f777yt8fVJSkrXTVG3WsGFDmxznnXfe\nkQULFtjkWDVRRedZP4sX5uLiInfffbd1+c8//5TmzZvrebORqp5f/ezansPOwvOPf/yDTZs2AZCY\nmMjUqVN1yLJKsFVns/vvv98mx6mpqrtTX03XsGFDtm3bxokTJ6hfvz6rV6/Gy8vros5rSUkJ9eo5\n7CXMVLY4v8o2nGJYxdM7PYkIkydPJjAwkPbt27NkyRLr6w4fPky/fv0ICAhg3Lhxtbr38YwZMwgJ\nCSaDkwAAAAkWSURBVCEoKIhp06YBcOzYMW699VaCg4MJDAzkk08+AeDJJ5/k+uuvJygoiCeeeAKA\nadOmMWvWLAB++eUXevbsSXBwMB07diQrK4tjx47Rs2dPOnbsSPv27Vm5cqUp79Ns5/ssHj16lKFD\nh3Lddddx9913W9d7e3szbdo063n7+eefzYjtEPr27csXX3wBwOLFixk+fLj1/9n169dz0003ccMN\nN/DPf/6TnTt3AjBv3jz69+9PWFgYPXv2ZNSoUaxYscJ6zLvuuqvWfhbPVNH5PXbsGGPGjKFz587c\ncMMNes6qk7kV6fOrW7euBAcHS0BAgDRp0kQ2btwoIiLx8fESHh4upaWlsm/fPrn66qslPz9fkpKS\npH79+pKVlSWnTp2S8PBwiY+PN/ld2F+jRo0kMTFR7rvvPhEROXXqlPTr109SU1Nl6dKlcu+991pf\ne+jQITlw4IC0bdu23DoRkWnTpsmsWbNERCQkJESWL18uIiLFxcXyxx9/SElJiRw+fFhERPbv3y++\nvr52eX+OolGjRrJ06dLzfhabNGkieXl5UlpaKl27dpXvvvtORES8vb3lrbfeEhGROXPmyD333GPm\n2zBNo0aN5Mcff5QhQ4bIiRMnJDg4WJKTk623Kg8fPiwlJSUiIrJ69WoZPHiwiIh88MEH4uXlJUVF\nRSIikpKSIgMHDhQRkYMHD0qbNm3k1KlTJrwjx3Kh8zt16lTr2AVFRUXi7+8vx44d09vF1cBha7IN\nGjRg06ZN/PTTTyQkJDBixAgAvv32W+68805cXFxo0aIFPXr0YMOGDbi4uBASEoK3tzd16tRh+PDh\nfPvttya/C3MkJiaSmJhIhw4d6NixIz///DO//PILgYGBrF69mieffJJvv/2Wxo0b06RJE+rXr8/Y\nsWP59NNPadCgQbljHT16lD179lh7fV922WU0aNCA0tJSpk6dSlBQEOHh4ezZs8fa47y2uNBn8aqr\nrsLFxYXg4OByIwENGjQIgBtuuKFWjxAUGBhIdnY2ixcv5tZbby237eDBgwwZMoTAwEAeffRRtm/f\nbt0WERFh7VDZvXt3MjMzOXDgAIsXL2bIkCHUqeOwlzW7quj8JiYmEh0dTYcOHbjlllsoLi4u95il\nsh2naNDo0qULBw4cYP/+/eeccLisneH09gYRqdXtD1OnTuW+++47a/2mTZv44osvePrppwkLC+OZ\nZ55h/fr1rFmzhvj4eN56661KDWH54YcfcuDAATZu3EjdunVp06YNJ06cqI634rAq+ixefvnl1nV1\n69alpKTEuly27cz1tVH//v15/PHHSUlJYf/+/db1zzzzDGFhYXz66afs2rWL0NBQ67Z//OMf5Y4x\ncuRIFi5cyMcff8y8efPslNw5nO/8Aixbtgw/P79y6/Lz8+0Zr1Zwiq98O3bsoLS0lObNm9OtWzc+\n/vhjSktL2b9/P6mpqYSEhCAirF+/nuzsbEpLS1myZAndunUzO7opIiIimDt3LseOHQMgLy+P/fv3\nk5+fT/369bnrrrt4/PHH2bhxI8eOHePgwYP06dOH//znP2zevBkwvqSICI0aNcLLy8va7lVcXMzx\n48c5fPgwLVq0oG7duiQlJTntLEmX4uabbz7vZ1FVzpgxY5g2bRrXX399ufWHDx/mqquuAuCDDz6o\n8BhRUVG8/vrruLi4EBAQUG1ZndH5zm+vXr2sj0sC1k6myvYctiZ7/PhxOnToABgX/Pnz5+Pi4sLt\nt9/O//73P4KCgnBxcWHGjBm0aNGC/2/v7kFSe+M4gH8z9NJg0FBLS7hEFocKhRoKiaQiohoysjda\nCkpN6G2IosChIgicdHCStl7AEBqCxhxKUyghhKAWoRoqqMi3O/zp/OvS7V4uHLX6frZzzvI8Dwe+\nPA8Pv184HIZWq4XJZEIkEkFDQ4NYDOO7iMfj+PHjB/R6PcLhMGprawEASqUSbrcbkUgEU1NTkMlk\nkMvlcDgcuL+/R3t7O56enpBKpbC2tgbgbVlMt9uNkZERzM/PQy6XY2NjA729vWhra4MgCNBoNCgr\nK8vYvNPtZZ0/+hf/5hQlHaVHs9XLvIuLi2EymcR3L++np6cxODgIm82G1tbWN6dVv65ZUVER1Go1\nOjs70ziD7Pan9Z2bm4PVaoUgCEgmk1CpVPB4PN/6n5TKPxejoOwTDAYxMjICn8+X6aF8aVzn7PLw\n8ABBEBAIBKBUKjM9HKI3PsVxMf2Zw+GA0WiEzWbL9FC+NK5zdtnb24NarYbFYmHAUlbiTpaIiEgi\n3MkSERFJhCFLREQkEYYsERGRRBiyREREEmHIEr1DJpNhcnJSfF5dXcXi4mIGR0REnxFDlugdCoUC\n29vbuLm5AcDWdkT0bxiyRO+Qy+UYHh4WK2C9trOzg5qaGlRXV0Ov14uNERYWFjA4OIj6+nqUlJRg\na2sLk5OTEAQBLS0tYp3io6Mj6HQ6aDQaNDc3IxqNAgDsdrvYcrCnpyd9kyUiyTBkiX5jdHQU6+vr\nuLu7e/O+rq4OPp8Pfr8f3d3dWFlZEb+dn59jf38fHo8HfX190Ov1CIVCyMvLg9frRSwWg9lsxubm\nJg4PDzE0NITZ2VkAwPLyMo6PjxEMBuF0OtM6VyKSRtbWLibKNKVSiYGBAdjt9jctAC8vL2EwGBCN\nRvH8/AyVSgXgvyPllpYW5ObmoqKiAslkEk1NTQD+bzt2dnaGk5MTNDY2AgASiYRYCF8QBBiNRnR0\ndHy7uttEXxV3skQfsFqtcLlcYkcjADCbzbBYLAiFQnA6nXh8fBS/KRQKABCbMLyQyWSIx+NIpVIo\nLy9HIBBAIBBAKBTC7u4uAMDr9WJsbAx+vx9arRaJRCJNsyQiqTBkiT5QUFAAg8EAl8slXn563Ybt\ndf/Sv6lQWlpaiqurK7G5QCwWw+npKVKpFC4uLqDT6bC0tITb29s3wU5EnxNDlugdr28TT0xM4Pr6\nWnxeWFhAV1cXNBoNCgsLf9uG7dcbyTk5OWKrwJmZGVRWVqKqqgoHBwdIJBLo7++HIAiorq7G+Pg4\n8vPzJZ4lEUmNDQKIiIgkwp0sERGRRBiyREREEmHIEhERSYQhS0REJBGGLBERkUQYskRERBL5CXMN\nK3cn5Q0CAAAAAElFTkSuQmCC\n"
       }
      ],
-     "prompt_number": 29
+     "prompt_number": 30
     }
    ],
    "metadata": {}

misc/portfolio/david/behance/01 - Lesson/IPython Notebook1.png

Added
New image

misc/portfolio/david/behance/01 - Lesson/IPython Notebook2.png

Added
New image

misc/portfolio/david/behance/01 - Lesson/IPython Notebook3.png

Added
New image

misc/portfolio/david/behance/01 - Lesson/IPython Notebook4.png

Added
New image

misc/portfolio/david/behance/01 - Lesson/IPython Notebook5.png

Added
New image

misc/portfolio/david/behance/01 - Lesson/IPython Notebook6.png

Added
New image

misc/portfolio/david/behance/01 - Lesson/IPython Notebook7.png

Added
New image

misc/portfolio/david/behance/02 - Lesson/IPython Notebook1.png

Added
New image

misc/portfolio/david/behance/02 - Lesson/IPython Notebook10.png

Added
New image

misc/portfolio/david/behance/02 - Lesson/IPython Notebook2.png

Added
New image

misc/portfolio/david/behance/02 - Lesson/IPython Notebook3.png

Added
New image

misc/portfolio/david/behance/02 - Lesson/IPython Notebook4.png

Added
New image

misc/portfolio/david/behance/02 - Lesson/IPython Notebook5.png

Added
New image

misc/portfolio/david/behance/02 - Lesson/IPython Notebook6.png

Added
New image

misc/portfolio/david/behance/02 - Lesson/IPython Notebook7.png

Added
New image

misc/portfolio/david/behance/02 - Lesson/IPython Notebook8.png

Added
New image

misc/portfolio/david/behance/02 - Lesson/IPython Notebook9.png

Added
New image

notebooks/Calculate Outliers.ipynb

+{
+ "metadata": {
+  "name": "Untitled0"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+  {
+   "cells": [
+    {
+     "cell_type": "code",
+     "collapsed": false,
+     "input": [
+      "from pandas import DataFrame, date_range, concat\n",
+      "\n",
+      "# Create a dataframe with dates as your index\n",
+      "States = ['NY', 'NY', 'NY', 'NY', 'FL', 'FL', 'GA', 'GA', 'FL', 'FL'] \n",
+      "data = [1.0, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n",
+      "idx = date_range('1/1/2012', periods=10, freq='MS')\n",
+      "df1 = DataFrame(data, index=idx, columns=['Revenue'])\n",
+      "df1['State'] = States\n",
+      "\n",
+      "# Create a second dataframe\n",
+      "data2 = [10.0, 10.0, 9, 9, 8, 8, 7, 7, 6, 6]\n",
+      "idx2 = date_range('1/1/2013', periods=10, freq='MS')\n",
+      "df2 = DataFrame(data2, index=idx2, columns=['Revenue'])\n",
+      "df2['State'] = States"
+     ],
+     "language": "python",
+     "metadata": {},
+     "outputs": [],
+     "prompt_number": 1
+    },
+    {
+     "cell_type": "code",
+     "collapsed": false,
+     "input": [
+      "# Combine dataframes\n",
+      "df = concat([df1,df2])\n",
+      "df"
+     ],
+     "language": "python",
+     "metadata": {},
+     "outputs": [
+      {
+       "html": [
+        "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
+        "<table border=\"1\" class=\"dataframe\">\n",
+        "  <thead>\n",
+        "    <tr style=\"text-align: right;\">\n",
+        "      <th></th>\n",
+        "      <th>Revenue</th>\n",
+        "      <th>State</th>\n",
+        "    </tr>\n",
+        "  </thead>\n",
+        "  <tbody>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-01-01</strong></td>\n",
+        "      <td>  1</td>\n",
+        "      <td> NY</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-02-01</strong></td>\n",
+        "      <td>  2</td>\n",
+        "      <td> NY</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-03-01</strong></td>\n",
+        "      <td>  3</td>\n",
+        "      <td> NY</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-04-01</strong></td>\n",
+        "      <td>  4</td>\n",
+        "      <td> NY</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-05-01</strong></td>\n",
+        "      <td>  5</td>\n",
+        "      <td> FL</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-06-01</strong></td>\n",
+        "      <td>  6</td>\n",
+        "      <td> FL</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-07-01</strong></td>\n",
+        "      <td>  7</td>\n",
+        "      <td> GA</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-08-01</strong></td>\n",
+        "      <td>  8</td>\n",
+        "      <td> GA</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-09-01</strong></td>\n",
+        "      <td>  9</td>\n",
+        "      <td> FL</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-10-01</strong></td>\n",
+        "      <td> 10</td>\n",
+        "      <td> FL</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-01-01</strong></td>\n",
+        "      <td> 10</td>\n",
+        "      <td> NY</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-02-01</strong></td>\n",
+        "      <td> 10</td>\n",
+        "      <td> NY</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-03-01</strong></td>\n",
+        "      <td>  9</td>\n",
+        "      <td> NY</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-04-01</strong></td>\n",
+        "      <td>  9</td>\n",
+        "      <td> NY</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-05-01</strong></td>\n",
+        "      <td>  8</td>\n",
+        "      <td> FL</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-06-01</strong></td>\n",
+        "      <td>  8</td>\n",
+        "      <td> FL</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-07-01</strong></td>\n",
+        "      <td>  7</td>\n",
+        "      <td> GA</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-08-01</strong></td>\n",
+        "      <td>  7</td>\n",
+        "      <td> GA</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-09-01</strong></td>\n",
+        "      <td>  6</td>\n",
+        "      <td> FL</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-10-01</strong></td>\n",
+        "      <td>  6</td>\n",
+        "      <td> FL</td>\n",
+        "    </tr>\n",
+        "  </tbody>\n",
+        "</table>\n",
+        "</div>"
+       ],
+       "output_type": "pyout",
+       "prompt_number": 2,
+       "text": [
+        "            Revenue State\n",
+        "2012-01-01        1    NY\n",
+        "2012-02-01        2    NY\n",
+        "2012-03-01        3    NY\n",
+        "2012-04-01        4    NY\n",
+        "2012-05-01        5    FL\n",
+        "2012-06-01        6    FL\n",
+        "2012-07-01        7    GA\n",
+        "2012-08-01        8    GA\n",
+        "2012-09-01        9    FL\n",
+        "2012-10-01       10    FL\n",
+        "2013-01-01       10    NY\n",
+        "2013-02-01       10    NY\n",
+        "2013-03-01        9    NY\n",
+        "2013-04-01        9    NY\n",
+        "2013-05-01        8    FL\n",
+        "2013-06-01        8    FL\n",
+        "2013-07-01        7    GA\n",
+        "2013-08-01        7    GA\n",
+        "2013-09-01        6    FL\n",
+        "2013-10-01        6    FL"
+       ]
+      }
+     ],
+     "prompt_number": 2
+    },
+    {
+     "cell_type": "heading",
+     "level": 1,
+     "metadata": {},
+     "source": [
+      "Ways to Calculate Outliers "
+     ]
+    },
+    {
+     "cell_type": "code",
+     "collapsed": false,
+     "input": [
+      "# Method 1\n",
+      "\n",
+      "df['x-Mean'] = abs(df['Revenue'] - df['Revenue'].mean())\n",
+      "df['1.96*std'] = 1.96*df['Revenue'].std()  \n",
+      "df['Outlier'] = abs(df['Revenue'] - df['Revenue'].mean()) > 1.96*df['Revenue'].std()\n",
+      "df"
+     ],
+     "language": "python",
+     "metadata": {},
+     "outputs": [
+      {
+       "html": [
+        "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
+        "<table border=\"1\" class=\"dataframe\">\n",
+        "  <thead>\n",
+        "    <tr style=\"text-align: right;\">\n",
+        "      <th></th>\n",
+        "      <th>Revenue</th>\n",
+        "      <th>State</th>\n",
+        "      <th>x-Mean</th>\n",
+        "      <th>1.96*std</th>\n",
+        "      <th>Outlier</th>\n",
+        "    </tr>\n",
+        "  </thead>\n",
+        "  <tbody>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-01-01</strong></td>\n",
+        "      <td>  1</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> 5.75</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td>  True</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-02-01</strong></td>\n",
+        "      <td>  2</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> 4.75</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td> False</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-03-01</strong></td>\n",
+        "      <td>  3</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> 3.75</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td> False</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-04-01</strong></td>\n",
+        "      <td>  4</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> 2.75</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td> False</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-05-01</strong></td>\n",
+        "      <td>  5</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> 1.75</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td> False</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-06-01</strong></td>\n",
+        "      <td>  6</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> 0.75</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td> False</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-07-01</strong></td>\n",
+        "      <td>  7</td>\n",
+        "      <td> GA</td>\n",
+        "      <td> 0.25</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td> False</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-08-01</strong></td>\n",
+        "      <td>  8</td>\n",
+        "      <td> GA</td>\n",
+        "      <td> 1.25</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td> False</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-09-01</strong></td>\n",
+        "      <td>  9</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> 2.25</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td> False</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-10-01</strong></td>\n",
+        "      <td> 10</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> 3.25</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td> False</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-01-01</strong></td>\n",
+        "      <td> 10</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> 3.25</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td> False</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-02-01</strong></td>\n",
+        "      <td> 10</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> 3.25</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td> False</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-03-01</strong></td>\n",
+        "      <td>  9</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> 2.25</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td> False</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-04-01</strong></td>\n",
+        "      <td>  9</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> 2.25</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td> False</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-05-01</strong></td>\n",
+        "      <td>  8</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> 1.25</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td> False</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-06-01</strong></td>\n",
+        "      <td>  8</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> 1.25</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td> False</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-07-01</strong></td>\n",
+        "      <td>  7</td>\n",
+        "      <td> GA</td>\n",
+        "      <td> 0.25</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td> False</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-08-01</strong></td>\n",
+        "      <td>  7</td>\n",
+        "      <td> GA</td>\n",
+        "      <td> 0.25</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td> False</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-09-01</strong></td>\n",
+        "      <td>  6</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> 0.75</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td> False</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-10-01</strong></td>\n",
+        "      <td>  6</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> 0.75</td>\n",
+        "      <td> 5.200273</td>\n",
+        "      <td> False</td>\n",
+        "    </tr>\n",
+        "  </tbody>\n",
+        "</table>\n",
+        "</div>"
+       ],
+       "output_type": "pyout",
+       "prompt_number": 3,
+       "text": [
+        "            Revenue State  x-Mean  1.96*std Outlier\n",
+        "2012-01-01        1    NY    5.75  5.200273    True\n",
+        "2012-02-01        2    NY    4.75  5.200273   False\n",
+        "2012-03-01        3    NY    3.75  5.200273   False\n",
+        "2012-04-01        4    NY    2.75  5.200273   False\n",
+        "2012-05-01        5    FL    1.75  5.200273   False\n",
+        "2012-06-01        6    FL    0.75  5.200273   False\n",
+        "2012-07-01        7    GA    0.25  5.200273   False\n",
+        "2012-08-01        8    GA    1.25  5.200273   False\n",
+        "2012-09-01        9    FL    2.25  5.200273   False\n",
+        "2012-10-01       10    FL    3.25  5.200273   False\n",
+        "2013-01-01       10    NY    3.25  5.200273   False\n",
+        "2013-02-01       10    NY    3.25  5.200273   False\n",
+        "2013-03-01        9    NY    2.25  5.200273   False\n",
+        "2013-04-01        9    NY    2.25  5.200273   False\n",
+        "2013-05-01        8    FL    1.25  5.200273   False\n",
+        "2013-06-01        8    FL    1.25  5.200273   False\n",
+        "2013-07-01        7    GA    0.25  5.200273   False\n",
+        "2013-08-01        7    GA    0.25  5.200273   False\n",
+        "2013-09-01        6    FL    0.75  5.200273   False\n",
+        "2013-10-01        6    FL    0.75  5.200273   False"
+       ]
+      }
+     ],
+     "prompt_number": 3
+    },
+    {
+     "cell_type": "code",
+     "collapsed": false,
+     "input": [
+      "df = concat([df1,df2]) #reset dataframe to prevent error\n",
+      "\n",
+      "# Method 2\n",
+      "# Group by item\n",
+      "\n",
+      "State = df.groupby('State')\n",
+      "\n",
+      "df['Outlier'] = State.transform( lambda x: abs(x-x.mean()) > 1.96*x.std() )\n",
+      "df['x-Mean'] = State.transform( lambda x: abs(x-x.mean()) )\n",
+      "df['1.96*std'] = State.transform( lambda x: 1.96*x.std() )\n",
+      "df"
+     ],
+     "language": "python",
+     "metadata": {},
+     "outputs": [
+      {
+       "html": [
+        "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
+        "<table border=\"1\" class=\"dataframe\">\n",
+        "  <thead>\n",
+        "    <tr style=\"text-align: right;\">\n",
+        "      <th></th>\n",
+        "      <th>Revenue</th>\n",
+        "      <th>State</th>\n",
+        "      <th>Outlier</th>\n",
+        "      <th>x-Mean</th>\n",
+        "      <th>1.96*std</th>\n",
+        "    </tr>\n",
+        "  </thead>\n",
+        "  <tbody>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-01-01</strong></td>\n",
+        "      <td>  1</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 5.00</td>\n",
+        "      <td> 7.554813</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-02-01</strong></td>\n",
+        "      <td>  2</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 4.00</td>\n",
+        "      <td> 7.554813</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-03-01</strong></td>\n",
+        "      <td>  3</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 3.00</td>\n",
+        "      <td> 7.554813</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-04-01</strong></td>\n",
+        "      <td>  4</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 2.00</td>\n",
+        "      <td> 7.554813</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-05-01</strong></td>\n",
+        "      <td>  5</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 2.25</td>\n",
+        "      <td> 3.434996</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-06-01</strong></td>\n",
+        "      <td>  6</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 1.25</td>\n",
+        "      <td> 3.434996</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-07-01</strong></td>\n",
+        "      <td>  7</td>\n",
+        "      <td> GA</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 0.25</td>\n",
+        "      <td> 0.980000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-08-01</strong></td>\n",
+        "      <td>  8</td>\n",
+        "      <td> GA</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 0.75</td>\n",
+        "      <td> 0.980000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-09-01</strong></td>\n",
+        "      <td>  9</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 1.75</td>\n",
+        "      <td> 3.434996</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-10-01</strong></td>\n",
+        "      <td> 10</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 2.75</td>\n",
+        "      <td> 3.434996</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-01-01</strong></td>\n",
+        "      <td> 10</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 4.00</td>\n",
+        "      <td> 7.554813</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-02-01</strong></td>\n",
+        "      <td> 10</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 4.00</td>\n",
+        "      <td> 7.554813</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-03-01</strong></td>\n",
+        "      <td>  9</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 3.00</td>\n",
+        "      <td> 7.554813</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-04-01</strong></td>\n",
+        "      <td>  9</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 3.00</td>\n",
+        "      <td> 7.554813</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-05-01</strong></td>\n",
+        "      <td>  8</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 0.75</td>\n",
+        "      <td> 3.434996</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-06-01</strong></td>\n",
+        "      <td>  8</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 0.75</td>\n",
+        "      <td> 3.434996</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-07-01</strong></td>\n",
+        "      <td>  7</td>\n",
+        "      <td> GA</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 0.25</td>\n",
+        "      <td> 0.980000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-08-01</strong></td>\n",
+        "      <td>  7</td>\n",
+        "      <td> GA</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 0.25</td>\n",
+        "      <td> 0.980000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-09-01</strong></td>\n",
+        "      <td>  6</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 1.25</td>\n",
+        "      <td> 3.434996</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-10-01</strong></td>\n",
+        "      <td>  6</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 1.25</td>\n",
+        "      <td> 3.434996</td>\n",
+        "    </tr>\n",
+        "  </tbody>\n",
+        "</table>\n",
+        "</div>"
+       ],
+       "output_type": "pyout",
+       "prompt_number": 4,
+       "text": [
+        "            Revenue State Outlier  x-Mean  1.96*std\n",
+        "2012-01-01        1    NY   False    5.00  7.554813\n",
+        "2012-02-01        2    NY   False    4.00  7.554813\n",
+        "2012-03-01        3    NY   False    3.00  7.554813\n",
+        "2012-04-01        4    NY   False    2.00  7.554813\n",
+        "2012-05-01        5    FL   False    2.25  3.434996\n",
+        "2012-06-01        6    FL   False    1.25  3.434996\n",
+        "2012-07-01        7    GA   False    0.25  0.980000\n",
+        "2012-08-01        8    GA   False    0.75  0.980000\n",
+        "2012-09-01        9    FL   False    1.75  3.434996\n",
+        "2012-10-01       10    FL   False    2.75  3.434996\n",
+        "2013-01-01       10    NY   False    4.00  7.554813\n",
+        "2013-02-01       10    NY   False    4.00  7.554813\n",
+        "2013-03-01        9    NY   False    3.00  7.554813\n",
+        "2013-04-01        9    NY   False    3.00  7.554813\n",
+        "2013-05-01        8    FL   False    0.75  3.434996\n",
+        "2013-06-01        8    FL   False    0.75  3.434996\n",
+        "2013-07-01        7    GA   False    0.25  0.980000\n",
+        "2013-08-01        7    GA   False    0.25  0.980000\n",
+        "2013-09-01        6    FL   False    1.25  3.434996\n",
+        "2013-10-01        6    FL   False    1.25  3.434996"
+       ]
+      }
+     ],
+     "prompt_number": 4
+    },
+    {
+     "cell_type": "code",
+     "collapsed": false,
+     "input": [
+      "df = concat([df1,df2]) #reset dataframe to prevent error\n",
+      "\n",
+      "# Method 2\n",
+      "# Group by multiple items\n",
+      "\n",
+      "StateMonth = df.groupby(['State', lambda x: x.month])\n",
+      "\n",
+      "df['Outlier'] = StateMonth.transform( lambda x: abs(x-x.mean()) > 1.96*x.std() )\n",
+      "df['x-Mean'] = StateMonth.transform( lambda x: abs(x-x.mean()) )\n",
+      "df['1.96*std'] = StateMonth.transform( lambda x: 1.96*x.std() )\n",
+      "df\n"
+     ],
+     "language": "python",
+     "metadata": {},
+     "outputs": [
+      {
+       "html": [
+        "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
+        "<table border=\"1\" class=\"dataframe\">\n",
+        "  <thead>\n",
+        "    <tr style=\"text-align: right;\">\n",
+        "      <th></th>\n",
+        "      <th>Revenue</th>\n",
+        "      <th>State</th>\n",
+        "      <th>Outlier</th>\n",
+        "      <th>x-Mean</th>\n",
+        "      <th>1.96*std</th>\n",
+        "    </tr>\n",
+        "  </thead>\n",
+        "  <tbody>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-01-01</strong></td>\n",
+        "      <td>  1</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 4.5</td>\n",
+        "      <td> 12.473364</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-02-01</strong></td>\n",
+        "      <td>  2</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 4.0</td>\n",
+        "      <td> 11.087434</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-03-01</strong></td>\n",
+        "      <td>  3</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 3.0</td>\n",
+        "      <td>  8.315576</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-04-01</strong></td>\n",
+        "      <td>  4</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 2.5</td>\n",
+        "      <td>  6.929646</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-05-01</strong></td>\n",
+        "      <td>  5</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 1.5</td>\n",
+        "      <td>  4.157788</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-06-01</strong></td>\n",
+        "      <td>  6</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 1.0</td>\n",
+        "      <td>  2.771859</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-07-01</strong></td>\n",
+        "      <td>  7</td>\n",
+        "      <td> GA</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 0.0</td>\n",
+        "      <td>  0.000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-08-01</strong></td>\n",
+        "      <td>  8</td>\n",
+        "      <td> GA</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 0.5</td>\n",
+        "      <td>  1.385929</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-09-01</strong></td>\n",
+        "      <td>  9</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 1.5</td>\n",
+        "      <td>  4.157788</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2012-10-01</strong></td>\n",
+        "      <td> 10</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 2.0</td>\n",
+        "      <td>  5.543717</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-01-01</strong></td>\n",
+        "      <td> 10</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 4.5</td>\n",
+        "      <td> 12.473364</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-02-01</strong></td>\n",
+        "      <td> 10</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 4.0</td>\n",
+        "      <td> 11.087434</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-03-01</strong></td>\n",
+        "      <td>  9</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 3.0</td>\n",
+        "      <td>  8.315576</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-04-01</strong></td>\n",
+        "      <td>  9</td>\n",
+        "      <td> NY</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 2.5</td>\n",
+        "      <td>  6.929646</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-05-01</strong></td>\n",
+        "      <td>  8</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 1.5</td>\n",
+        "      <td>  4.157788</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-06-01</strong></td>\n",
+        "      <td>  8</td>\n",
+        "      <td> FL</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 1.0</td>\n",
+        "      <td>  2.771859</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-07-01</strong></td>\n",
+        "      <td>  7</td>\n",
+        "      <td> GA</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 0.0</td>\n",
+        "      <td>  0.000000</td>\n",
+        "    </tr>\n",
+        "    <tr>\n",
+        "      <td><strong>2013-08-01</strong></td>\n",
+        "      <td>  7</td>\n",
+        "      <td> GA</td>\n",
+        "      <td> False</td>\n",
+        "      <td> 0.5</td>\n",