Source

quake3 / code / splines / math_matrix.h

Full commit
/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.

This file is part of Quake III Arena source code.

Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Foobar; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
===========================================================================
*/
#ifndef __MATH_MATRIX_H__
#define __MATH_MATRIX_H__

#include <string.h>
#include "math_vector.h"

#ifndef ID_INLINE
#ifdef _WIN32
#define ID_INLINE __inline 
#else
#define ID_INLINE inline
#endif
#endif

class quat_t;
class angles_t;

class mat3_t {
public:
	idVec3_t			mat[ 3 ];

					mat3_t();
					mat3_t( float src[ 3 ][ 3 ] );
					mat3_t( idVec3_t const &x, idVec3_t const &y, idVec3_t const &z );
					mat3_t( const float xx, const float xy, const float xz, const float yx, const float yy, const float yz, const float zx, const float zy, const float zz );

	friend void		toMatrix( quat_t const &src, mat3_t &dst );
	friend void		toMatrix( angles_t const &src, mat3_t &dst );
	friend void		toMatrix( idVec3_t const &src, mat3_t &dst );

	idVec3_t			operator[]( int index ) const;
	idVec3_t			&operator[]( int index );

	idVec3_t			operator*( const idVec3_t &vec ) const;
	mat3_t			operator*( const mat3_t &a ) const;
	mat3_t			operator*( float a ) const;
	mat3_t			operator+( mat3_t const &a ) const;
	mat3_t			operator-( mat3_t const &a ) const;

	friend idVec3_t	operator*( const idVec3_t &vec, const mat3_t &mat );
	friend mat3_t	operator*( float a, mat3_t const &b );

	mat3_t			&operator*=( float a );
	mat3_t			&operator+=( mat3_t const &a );
	mat3_t			&operator-=( mat3_t const &a );

	void			Clear( void );

	void			ProjectVector( const idVec3_t &src, idVec3_t &dst ) const;
	void			UnprojectVector( const idVec3_t &src, idVec3_t &dst ) const;

	void			OrthoNormalize( void );
	void			Transpose( mat3_t &matrix );
	void			Transpose( void );
	mat3_t			Inverse( void ) const;
	void			Identity( void );

	friend void		InverseMultiply( const mat3_t &inv, const mat3_t &b, mat3_t &dst );
	friend mat3_t	SkewSymmetric( idVec3_t const &src );
};

ID_INLINE mat3_t::mat3_t() {
}

ID_INLINE mat3_t::mat3_t( float src[ 3 ][ 3 ] ) {
	memcpy( mat, src, sizeof( src ) );
}

ID_INLINE mat3_t::mat3_t( idVec3_t const &x, idVec3_t const &y, idVec3_t const &z ) {
	mat[ 0 ].x = x.x; mat[ 0 ].y = x.y; mat[ 0 ].z = x.z;
	mat[ 1 ].x = y.x; mat[ 1 ].y = y.y; mat[ 1 ].z = y.z;
	mat[ 2 ].x = z.x; mat[ 2 ].y = z.y; mat[ 2 ].z = z.z;
}

ID_INLINE mat3_t::mat3_t( const float xx, const float xy, const float xz, const float yx, const float yy, const float yz, const float zx, const float zy, const float zz ) {
	mat[ 0 ].x = xx; mat[ 0 ].y = xy; mat[ 0 ].z = xz;
	mat[ 1 ].x = yx; mat[ 1 ].y = yy; mat[ 1 ].z = yz;
	mat[ 2 ].x = zx; mat[ 2 ].y = zy; mat[ 2 ].z = zz;
}

ID_INLINE idVec3_t mat3_t::operator[]( int index ) const {
	assert( ( index >= 0 ) && ( index < 3 ) );
	return mat[ index ];
}

ID_INLINE idVec3_t& mat3_t::operator[]( int index ) {
	assert( ( index >= 0 ) && ( index < 3 ) );
	return mat[ index ];
}

ID_INLINE idVec3_t mat3_t::operator*( const idVec3_t &vec ) const {
	return idVec3_t( 
		mat[ 0 ].x * vec.x + mat[ 1 ].x * vec.y + mat[ 2 ].x * vec.z,
		mat[ 0 ].y * vec.x + mat[ 1 ].y * vec.y + mat[ 2 ].y * vec.z,
		mat[ 0 ].z * vec.x + mat[ 1 ].z * vec.y + mat[ 2 ].z * vec.z );
}

ID_INLINE mat3_t mat3_t::operator*( const mat3_t &a ) const {
	return mat3_t( 
		mat[0].x * a[0].x + mat[0].y * a[1].x + mat[0].z * a[2].x,
		mat[0].x * a[0].y + mat[0].y * a[1].y + mat[0].z * a[2].y,
		mat[0].x * a[0].z + mat[0].y * a[1].z + mat[0].z * a[2].z,
		mat[1].x * a[0].x + mat[1].y * a[1].x + mat[1].z * a[2].x,
		mat[1].x * a[0].y + mat[1].y * a[1].y + mat[1].z * a[2].y,
		mat[1].x * a[0].z + mat[1].y * a[1].z + mat[1].z * a[2].z,
		mat[2].x * a[0].x + mat[2].y * a[1].x + mat[2].z * a[2].x,
		mat[2].x * a[0].y + mat[2].y * a[1].y + mat[2].z * a[2].y,
		mat[2].x * a[0].z + mat[2].y * a[1].z + mat[2].z * a[2].z );
}

ID_INLINE mat3_t mat3_t::operator*( float a ) const {
	return mat3_t( 
		mat[0].x * a, mat[0].y * a, mat[0].z * a, 
		mat[1].x * a, mat[1].y * a, mat[1].z * a, 
		mat[2].x * a, mat[2].y * a, mat[2].z * a );
}

ID_INLINE mat3_t mat3_t::operator+( mat3_t const &a ) const {
	return mat3_t( 
		mat[0].x + a[0].x, mat[0].y + a[0].y, mat[0].z + a[0].z, 
		mat[1].x + a[1].x, mat[1].y + a[1].y, mat[1].z + a[1].z, 
		mat[2].x + a[2].x, mat[2].y + a[2].y, mat[2].z + a[2].z );
}
    
ID_INLINE mat3_t mat3_t::operator-( mat3_t const &a ) const {
	return mat3_t( 
		mat[0].x - a[0].x, mat[0].y - a[0].y, mat[0].z - a[0].z, 
		mat[1].x - a[1].x, mat[1].y - a[1].y, mat[1].z - a[1].z, 
		mat[2].x - a[2].x, mat[2].y - a[2].y, mat[2].z - a[2].z );
}

ID_INLINE idVec3_t operator*( const idVec3_t &vec, const mat3_t &mat ) {
	return idVec3_t( 
		mat[ 0 ].x * vec.x + mat[ 1 ].x * vec.y + mat[ 2 ].x * vec.z,
		mat[ 0 ].y * vec.x + mat[ 1 ].y * vec.y + mat[ 2 ].y * vec.z,
		mat[ 0 ].z * vec.x + mat[ 1 ].z * vec.y + mat[ 2 ].z * vec.z );
}

ID_INLINE mat3_t operator*( float a, mat3_t const &b ) {
	return mat3_t( 
		b[0].x * a, b[0].y * a, b[0].z * a, 
		b[1].x * a, b[1].y * a, b[1].z * a, 
		b[2].x * a, b[2].y * a, b[2].z * a );
}

ID_INLINE mat3_t &mat3_t::operator*=( float a ) {
	mat[0].x *= a; mat[0].y *= a; mat[0].z *= a;
	mat[1].x *= a; mat[1].y *= a; mat[1].z *= a; 
	mat[2].x *= a; mat[2].y *= a; mat[2].z *= a;

    return *this;
}

ID_INLINE mat3_t &mat3_t::operator+=( mat3_t const &a ) {
	mat[0].x += a[0].x; mat[0].y += a[0].y; mat[0].z += a[0].z;
	mat[1].x += a[1].x; mat[1].y += a[1].y; mat[1].z += a[1].z;
	mat[2].x += a[2].x; mat[2].y += a[2].y; mat[2].z += a[2].z;

    return *this;
}

ID_INLINE mat3_t &mat3_t::operator-=( mat3_t const &a ) {
	mat[0].x -= a[0].x; mat[0].y -= a[0].y; mat[0].z -= a[0].z;
	mat[1].x -= a[1].x; mat[1].y -= a[1].y; mat[1].z -= a[1].z;
	mat[2].x -= a[2].x; mat[2].y -= a[2].y; mat[2].z -= a[2].z;

    return *this;
}

ID_INLINE void mat3_t::OrthoNormalize( void ) {
	mat[ 0 ].Normalize();
	mat[ 2 ].Cross( mat[ 0 ], mat[ 1 ] );
	mat[ 2 ].Normalize();
	mat[ 1 ].Cross( mat[ 2 ], mat[ 0 ] );
	mat[ 1 ].Normalize();
}

ID_INLINE void mat3_t::Identity( void ) {
	mat[ 0 ].x = 1.f; mat[ 0 ].y = 0.f; mat[ 0 ].z = 0.f;
	mat[ 1 ].x = 0.f; mat[ 1 ].y = 1.f; mat[ 1 ].z = 0.f;
	mat[ 2 ].x = 0.f; mat[ 2 ].y = 0.f; mat[ 2 ].z = 1.f;
}

ID_INLINE void InverseMultiply( const mat3_t &inv, const mat3_t &b, mat3_t &dst ) {
	dst[0].x = inv[0].x * b[0].x + inv[1].x * b[1].x + inv[2].x * b[2].x;
	dst[0].y = inv[0].x * b[0].y + inv[1].x * b[1].y + inv[2].x * b[2].y;
	dst[0].z = inv[0].x * b[0].z + inv[1].x * b[1].z + inv[2].x * b[2].z;
	dst[1].x = inv[0].y * b[0].x + inv[1].y * b[1].x + inv[2].y * b[2].x;
	dst[1].y = inv[0].y * b[0].y + inv[1].y * b[1].y + inv[2].y * b[2].y;
	dst[1].z = inv[0].y * b[0].z + inv[1].y * b[1].z + inv[2].y * b[2].z;
	dst[2].x = inv[0].z * b[0].x + inv[1].z * b[1].x + inv[2].z * b[2].x;
	dst[2].y = inv[0].z * b[0].y + inv[1].z * b[1].y + inv[2].z * b[2].y;
	dst[2].z = inv[0].z * b[0].z + inv[1].z * b[1].z + inv[2].z * b[2].z;
}

ID_INLINE mat3_t SkewSymmetric( idVec3_t const &src ) {
	return mat3_t( 0.0f, -src.z,  src.y, src.z,   0.0f, -src.x, -src.y,  src.x,   0.0f );
}

extern mat3_t mat3_default;

#endif /* !__MATH_MATRIX_H__ */