1. Thejesh GN
  2. quake3

Source

quake3 / common / mathlib.c

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.

This file is part of Quake III Arena source code.

Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Foobar; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
===========================================================================
*/
// mathlib.c -- math primitives

#include "cmdlib.h"
#include "mathlib.h"

#ifdef _WIN32
//Improve floating-point consistency.
//without this option weird floating point issues occur
#pragma optimize( "p", on )
#endif


vec3_t vec3_origin = {0,0,0};

/*
** NormalToLatLong
**
** We use two byte encoded normals in some space critical applications.
** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format
** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format
**
*/
void NormalToLatLong( const vec3_t normal, byte bytes[2] ) {
	// check for singularities
	if ( normal[0] == 0 && normal[1] == 0 ) {
		if ( normal[2] > 0 ) {
			bytes[0] = 0;
			bytes[1] = 0;		// lat = 0, long = 0
		} else {
			bytes[0] = 128;
			bytes[1] = 0;		// lat = 0, long = 128
		}
	} else {
		int	a, b;

		a = RAD2DEG( atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f );
		a &= 0xff;

		b = RAD2DEG( acos( normal[2] ) ) * ( 255.0f / 360.0f );
		b &= 0xff;

		bytes[0] = b;	// longitude
		bytes[1] = a;	// lattitude
	}
}

/*
=====================
PlaneFromPoints

Returns false if the triangle is degenrate.
The normal will point out of the clock for clockwise ordered points
=====================
*/
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
	vec3_t	d1, d2;

	VectorSubtract( b, a, d1 );
	VectorSubtract( c, a, d2 );
	CrossProduct( d2, d1, plane );
	if ( VectorNormalize( plane, plane ) == 0 ) {
		return qfalse;
	}

	plane[3] = DotProduct( a, plane );
	return qtrue;
}

/*
================
MakeNormalVectors

Given a normalized forward vector, create two
other perpendicular vectors
================
*/
void MakeNormalVectors (vec3_t forward, vec3_t right, vec3_t up)
{
	float		d;

	// this rotate and negate guarantees a vector
	// not colinear with the original
	right[1] = -forward[0];
	right[2] = forward[1];
	right[0] = forward[2];

	d = DotProduct (right, forward);
	VectorMA (right, -d, forward, right);
	VectorNormalize (right, right);
	CrossProduct (right, forward, up);
}


void Vec10Copy( vec_t *in, vec_t *out ) {
	out[0] = in[0];
	out[1] = in[1];
	out[2] = in[2];
	out[3] = in[3];
	out[4] = in[4];
	out[5] = in[5];
	out[6] = in[6];
	out[7] = in[7];
	out[8] = in[8];
	out[9] = in[9];
}


void VectorRotate3x3( vec3_t v, float r[3][3], vec3_t d )
{
	d[0] = v[0] * r[0][0] + v[1] * r[1][0] + v[2] * r[2][0];
	d[1] = v[0] * r[0][1] + v[1] * r[1][1] + v[2] * r[2][1];
	d[2] = v[0] * r[0][2] + v[1] * r[1][2] + v[2] * r[2][2];
}

double VectorLength( const vec3_t v ) {
	int		i;
	double	length;
	
	length = 0;
	for (i=0 ; i< 3 ; i++)
		length += v[i]*v[i];
	length = sqrt (length);		// FIXME

	return length;
}

qboolean VectorCompare( const vec3_t v1, const vec3_t v2 ) {
	int		i;
	
	for (i=0 ; i<3 ; i++)
		if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON)
			return qfalse;
			
	return qtrue;
}

vec_t Q_rint (vec_t in)
{
	return floor (in + 0.5);
}

void VectorMA( const vec3_t va, double scale, const vec3_t vb, vec3_t vc ) {
	vc[0] = va[0] + scale*vb[0];
	vc[1] = va[1] + scale*vb[1];
	vc[2] = va[2] + scale*vb[2];
}

void CrossProduct( const vec3_t v1, const vec3_t v2, vec3_t cross ) {
	cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
	cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
	cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
}

vec_t _DotProduct (vec3_t v1, vec3_t v2)
{
	return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}

void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out)
{
	out[0] = va[0]-vb[0];
	out[1] = va[1]-vb[1];
	out[2] = va[2]-vb[2];
}

void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out)
{
	out[0] = va[0]+vb[0];
	out[1] = va[1]+vb[1];
	out[2] = va[2]+vb[2];
}

void _VectorCopy (vec3_t in, vec3_t out)
{
	out[0] = in[0];
	out[1] = in[1];
	out[2] = in[2];
}

void _VectorScale (vec3_t v, vec_t scale, vec3_t out)
{
	out[0] = v[0] * scale;
	out[1] = v[1] * scale;
	out[2] = v[2] * scale;
}

vec_t VectorNormalize( const vec3_t in, vec3_t out ) {
	vec_t	length, ilength;

	length = sqrt (in[0]*in[0] + in[1]*in[1] + in[2]*in[2]);
	if (length == 0)
	{
		VectorClear (out);
		return 0;
	}

	ilength = 1.0/length;
	out[0] = in[0]*ilength;
	out[1] = in[1]*ilength;
	out[2] = in[2]*ilength;

	return length;
}

vec_t ColorNormalize( const vec3_t in, vec3_t out ) {
	float	max, scale;

	max = in[0];
	if (in[1] > max)
		max = in[1];
	if (in[2] > max)
		max = in[2];

	if (max == 0) {
		out[0] = out[1] = out[2] = 1.0;
		return 0;
	}

	scale = 1.0 / max;

	VectorScale (in, scale, out);

	return max;
}



void VectorInverse (vec3_t v)
{
	v[0] = -v[0];
	v[1] = -v[1];
	v[2] = -v[2];
}

void ClearBounds (vec3_t mins, vec3_t maxs)
{
	mins[0] = mins[1] = mins[2] = 99999;
	maxs[0] = maxs[1] = maxs[2] = -99999;
}

void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) {
	int		i;
	vec_t	val;

	for (i=0 ; i<3 ; i++)
	{
		val = v[i];
		if (val < mins[i])
			mins[i] = val;
		if (val > maxs[i])
			maxs[i] = val;
	}
}


/*
=================
PlaneTypeForNormal
=================
*/
int	PlaneTypeForNormal (vec3_t normal) {
	if (normal[0] == 1.0 || normal[0] == -1.0)
		return PLANE_X;
	if (normal[1] == 1.0 || normal[1] == -1.0)
		return PLANE_Y;
	if (normal[2] == 1.0 || normal[2] == -1.0)
		return PLANE_Z;
	
	return PLANE_NON_AXIAL;
}

/*
================
MatrixMultiply
================
*/
void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
	out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
				in1[0][2] * in2[2][0];
	out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
				in1[0][2] * in2[2][1];
	out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
				in1[0][2] * in2[2][2];
	out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
				in1[1][2] * in2[2][0];
	out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
				in1[1][2] * in2[2][1];
	out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
				in1[1][2] * in2[2][2];
	out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
				in1[2][2] * in2[2][0];
	out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
				in1[2][2] * in2[2][1];
	out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
				in1[2][2] * in2[2][2];
}

void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
{
	float d;
	vec3_t n;
	float inv_denom;

	inv_denom = 1.0F / DotProduct( normal, normal );

	d = DotProduct( normal, p ) * inv_denom;

	n[0] = normal[0] * inv_denom;
	n[1] = normal[1] * inv_denom;
	n[2] = normal[2] * inv_denom;

	dst[0] = p[0] - d * n[0];
	dst[1] = p[1] - d * n[1];
	dst[2] = p[2] - d * n[2];
}

/*
** assumes "src" is normalized
*/
void PerpendicularVector( vec3_t dst, const vec3_t src )
{
	int	pos;
	int i;
	float minelem = 1.0F;
	vec3_t tempvec;

	/*
	** find the smallest magnitude axially aligned vector
	*/
	for ( pos = 0, i = 0; i < 3; i++ )
	{
		if ( fabs( src[i] ) < minelem )
		{
			pos = i;
			minelem = fabs( src[i] );
		}
	}
	tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
	tempvec[pos] = 1.0F;

	/*
	** project the point onto the plane defined by src
	*/
	ProjectPointOnPlane( dst, tempvec, src );

	/*
	** normalize the result
	*/
	VectorNormalize( dst, dst );
}

/*
===============
RotatePointAroundVector

This is not implemented very well...
===============
*/
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
							 float degrees ) {
	float	m[3][3];
	float	im[3][3];
	float	zrot[3][3];
	float	tmpmat[3][3];
	float	rot[3][3];
	int	i;
	vec3_t vr, vup, vf;
	float	rad;

	vf[0] = dir[0];
	vf[1] = dir[1];
	vf[2] = dir[2];

	PerpendicularVector( vr, dir );
	CrossProduct( vr, vf, vup );

	m[0][0] = vr[0];
	m[1][0] = vr[1];
	m[2][0] = vr[2];

	m[0][1] = vup[0];
	m[1][1] = vup[1];
	m[2][1] = vup[2];

	m[0][2] = vf[0];
	m[1][2] = vf[1];
	m[2][2] = vf[2];

	memcpy( im, m, sizeof( im ) );

	im[0][1] = m[1][0];
	im[0][2] = m[2][0];
	im[1][0] = m[0][1];
	im[1][2] = m[2][1];
	im[2][0] = m[0][2];
	im[2][1] = m[1][2];

	memset( zrot, 0, sizeof( zrot ) );
	zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;

	rad = DEG2RAD( degrees );
	zrot[0][0] = cos( rad );
	zrot[0][1] = sin( rad );
	zrot[1][0] = -sin( rad );
	zrot[1][1] = cos( rad );

	MatrixMultiply( m, zrot, tmpmat );
	MatrixMultiply( tmpmat, im, rot );

	for ( i = 0; i < 3; i++ ) {
		dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
	}
}