# udacity373_code / unit2 / u2-hw6_fillmatrices.py

 ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216``` ```# Fill in the matrices P, F, H, R and I at the bottom # # This question requires NO CODING, just fill in the # matrices where indicated. Please do not delete or modify # any provided code OR comments. Good luck! from math import * class matrix: # implements basic operations of a matrix class def __init__(self, value): self.value = value self.dimx = len(value) self.dimy = len(value[0]) if value == [[]]: self.dimx = 0 def zero(self, dimx, dimy): # check if valid dimensions if dimx < 1 or dimy < 1: raise ValueError, "Invalid size of matrix" else: self.dimx = dimx self.dimy = dimy self.value = [[0 for row in range(dimy)] for col in range(dimx)] def identity(self, dim): # check if valid dimension if dim < 1: raise ValueError, "Invalid size of matrix" else: self.dimx = dim self.dimy = dim self.value = [[0 for row in range(dim)] for col in range(dim)] for i in range(dim): self.value[i][i] = 1 def show(self): for i in range(self.dimx): print self.value[i] print ' ' def __add__(self, other): # check if correct dimensions if self.dimx != other.dimx or self.dimy != other.dimy: raise ValueError, "Matrices must be of equal dimensions to add" else: # add if correct dimensions res = matrix([[]]) res.zero(self.dimx, self.dimy) for i in range(self.dimx): for j in range(self.dimy): res.value[i][j] = self.value[i][j] + other.value[i][j] return res def __sub__(self, other): # check if correct dimensions if self.dimx != other.dimx or self.dimy != other.dimy: raise ValueError, "Matrices must be of equal dimensions to subtract" else: # subtract if correct dimensions res = matrix([[]]) res.zero(self.dimx, self.dimy) for i in range(self.dimx): for j in range(self.dimy): res.value[i][j] = self.value[i][j] - other.value[i][j] return res def __mul__(self, other): # check if correct dimensions if self.dimy != other.dimx: raise ValueError, "Matrices must be m*n and n*p to multiply" else: # subtract if correct dimensions res = matrix([[]]) res.zero(self.dimx, other.dimy) for i in range(self.dimx): for j in range(other.dimy): for k in range(self.dimy): res.value[i][j] += self.value[i][k] * other.value[k][j] return res def transpose(self): # compute transpose res = matrix([[]]) res.zero(self.dimy, self.dimx) for i in range(self.dimx): for j in range(self.dimy): res.value[j][i] = self.value[i][j] return res # Thanks to Ernesto P. Adorio for use of Cholesky and CholeskyInverse functions def Cholesky(self, ztol=1.0e-5): # Computes the upper triangular Cholesky factorization of # a positive definite matrix. res = matrix([[]]) res.zero(self.dimx, self.dimx) for i in range(self.dimx): S = sum([(res.value[k][i])**2 for k in range(i)]) d = self.value[i][i] - S if abs(d) < ztol: res.value[i][i] = 0.0 else: if d < 0.0: raise ValueError, "Matrix not positive-definite" res.value[i][i] = sqrt(d) for j in range(i+1, self.dimx): S = sum([res.value[k][i] * res.value[k][j] for k in range(self.dimx)]) if abs(S) < ztol: S = 0.0 res.value[i][j] = (self.value[i][j] - S)/res.value[i][i] return res def CholeskyInverse(self): # Computes inverse of matrix given its Cholesky upper Triangular # decomposition of matrix. res = matrix([[]]) res.zero(self.dimx, self.dimx) # Backward step for inverse. for j in reversed(range(self.dimx)): tjj = self.value[j][j] S = sum([self.value[j][k]*res.value[j][k] for k in range(j+1, self.dimx)]) res.value[j][j] = 1.0/tjj**2 - S/tjj for i in reversed(range(j)): res.value[j][i] = res.value[i][j] = -sum([self.value[i][k]*res.value[k][j] for k in range(i+1, self.dimx)])/self.value[i][i] return res def inverse(self): aux = self.Cholesky() res = aux.CholeskyInverse() return res def __repr__(self): return repr(self.value) ######################################## def filter(x, P): for n in range(len(measurements)): # prediction x = (F * x) + u P = F * P * F.transpose() # measurement update Z = matrix([measurements[n]]) y = Z.transpose() - (H * x) S = H * P * H.transpose() + R K = P * H.transpose() * S.inverse() x = x + (K * y) P = (I - (K * H)) * P print 'x= ' x.show() print 'P= ' P.show() ######################################## print "### 4-dimensional example ###" measurements = [[5., 10.], [6., 8.], [7., 6.], [8., 4.], [9., 2.], [10., 0.]] initial_xy = [4., 12.] # measurements = [[1., 4.], [6., 0.], [11., -4.], [16., -8.]] # initial_xy = [-4., 8.] # measurements = [[1., 17.], [1., 15.], [1., 13.], [1., 11.]] # initial_xy = [1., 19.] dt = 0.1 x = matrix([[initial_xy[0]], [initial_xy[1]], [0.], [0.]]) # initial state (location and velocity) u = matrix([[0.], [0.], [0.], [0.]]) # external motion #### DO NOT MODIFY ANYTHING ABOVE HERE #### #### fill this in, remember to use the matrix() function!: #### P = matrix([ [0., 0. ,0., 0.], [0., 0., 0., 0.], [0., 0., 1000., 0.], [0., 0., 0., 1000.] ])# initial uncertainty F = matrix([ [1, 0., dt, 0.0], [0., 1, 0.0, dt], [0., 0., 1., 0.], [0., 0., 0., 1.] ]) # next state function H = matrix([ [1., 0., 0., 0.], [0., 1., 0., 0.] ])# measurement function R = matrix([ [1., 0.1], [0.1, 1.] ])# measurement uncertainty I = matrix([ [1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.], ])# identity matrix #P = R * I ###### DO NOT MODIFY ANYTHING HERE ####### filter(x, P) ```