udacity373_code / unit5_14.py

# -----------
# User Instructions
#
# Implement a P controller by running 100 iterations
# of robot motion. The steering angle should be set
# by the parameter tau so that:
#
# steering = -tau_p * CTE - tau_d * diff_CTE - tau_i * int_CTE
#
# where the integrated crosstrack error (int_CTE) is
# the sum of all the previous crosstrack errors.
# This term works to cancel out steering drift.
#
# Your code should print a list that looks just like
# the list shown in the video.
#
# Only modify code at the bottom!
# ------------
 
from math import *
import random


# ------------------------------------------------
# 
# this is the robot class
#

class robot:

    # --------
    # init: 
    #    creates robot and initializes location/orientation to 0, 0, 0
    #

    def __init__(self, length = 20.0):
        self.x = 0.0
        self.y = 0.0
        self.orientation = 0.0
        self.length = length
        self.steering_noise = 0.0
        self.distance_noise = 0.0
        self.steering_drift = 0.0

    # --------
    # set: 
    #	sets a robot coordinate
    #

    def set(self, new_x, new_y, new_orientation):

        self.x = float(new_x)
        self.y = float(new_y)
        self.orientation = float(new_orientation) % (2.0 * pi)


    # --------
    # set_noise: 
    #	sets the noise parameters
    #

    def set_noise(self, new_s_noise, new_d_noise):
        # makes it possible to change the noise parameters
        # this is often useful in particle filters
        self.steering_noise = float(new_s_noise)
        self.distance_noise = float(new_d_noise)

    # --------
    # set_steering_drift: 
    #	sets the systematical steering drift parameter
    #

    def set_steering_drift(self, drift):
        self.steering_drift = drift
        
    # --------
    # move: 
    #    steering = front wheel steering angle, limited by max_steering_angle
    #    distance = total distance driven, most be non-negative

    def move(self, steering, distance, 
             tolerance = 0.001, max_steering_angle = pi / 4.0):

        if steering > max_steering_angle:
            steering = max_steering_angle
        if steering < -max_steering_angle:
            steering = -max_steering_angle
        if distance < 0.0:
            distance = 0.0


        # make a new copy
        res = robot()
        res.length         = self.length
        res.steering_noise = self.steering_noise
        res.distance_noise = self.distance_noise
        res.steering_drift = self.steering_drift

        # apply noise
        steering2 = random.gauss(steering, self.steering_noise)
        distance2 = random.gauss(distance, self.distance_noise)

        # apply steering drift
        steering2 += self.steering_drift

        # Execute motion
        turn = tan(steering2) * distance2 / res.length

        if abs(turn) < tolerance:

            # approximate by straight line motion

            res.x = self.x + (distance2 * cos(self.orientation))
            res.y = self.y + (distance2 * sin(self.orientation))
            res.orientation = (self.orientation + turn) % (2.0 * pi)

        else:

            # approximate bicycle model for motion

            radius = distance2 / turn
            cx = self.x - (sin(self.orientation) * radius)
            cy = self.y + (cos(self.orientation) * radius)
            res.orientation = (self.orientation + turn) % (2.0 * pi)
            res.x = cx + (sin(res.orientation) * radius)
            res.y = cy - (cos(res.orientation) * radius)

        return res




    def __repr__(self):
        return '[x=%.5f y=%.5f orient=%.5f]'  % (self.x, self.y, self.orientation)




############## ADD / MODIFY CODE BELOW ####################

# ------------------------------------------------------------------------
#
# run - does a single control run.


def run(param1, param2, param3):
    myrobot = robot()
    myrobot.set(0.0, 1.0, 0.0)
    speed = 1.0 # motion distance is equal to speed (we assume time = 1)
    N = 100
    myrobot.set_steering_drift(10.0 / 180.0 * pi) # 10 degree bias, this will be added in by the move function, you do not need to add it below!
    # Enter code here
    cte_prev = myrobot.y
    cte_sum = 0.0000001
    for i in range(N):
        cte = myrobot.y
        steer = -param1 * cte - param2 * (cte - cte_prev) - param3 * cte_sum
        myrobot = myrobot.move(steer, speed)
        cte_prev = cte
        cte_sum += cte
        print myrobot, steer

# Call your function with parameters of (0.2, 3.0, and 0.004)
run(0.2, 3.0, 0.004)
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.