
tuProlog Manual

tuProlog version: 2.9.2

February 16, 2015

Enrico Denti
Alma Mater Studiorum–Università di Bologna, Italy

Contents

1 What is tuProlog 6

2 Installing tuProlog 9
2.1 Installation in Java . 9
2.2 Installation in .NET . 11
2.3 Installation in Android . 11
2.4 Installation in Eclipse . 12

3 Getting Started 15
3.1 tuProlog for the Prolog User 16

3.1.1 Editing theories . 18
3.1.2 Solving goals . 20
3.1.3 Debugging support . 22
3.1.4 Dynamic library management 25
3.1.5 Input from console . 26

3.2 tuProlog for the Java Developer 27
3.3 tuProlog for the .NET Developer 33
3.4 tuProlog for the Android User 34

3.4.1 Class loading issues: tuProlog 2.9 news 39

4 tuProlog Basics 42
4.1 Predicate categories . 42
4.2 Syntax . 43
4.3 Engine configurability . 45
4.4 Exception support . 46

4.4.1 Error classification . 47
4.5 Built-in predicates . 48

4.5.1 Control management 48
4.5.2 Term unification and management 50

1

4.5.3 Knowledge base management 52
4.5.4 Operator and flag management 54
4.5.5 Library management 56
4.5.6 Directives . 57

5 tuProlog Libraries 60
5.1 BasicLibrary . 62

5.1.1 Predicates . 62
5.1.1.1 Type Testing 62
5.1.1.2 Term Creation, Decomposition and Unification 63
5.1.1.3 Occurs Check 65
5.1.1.4 Expression and Term Comparison 66
5.1.1.5 Finding Solutions 66
5.1.1.6 Control Management 67
5.1.1.7 Clause Retrieval, Creation and Destruction . 68
5.1.1.8 Operator Management 69
5.1.1.9 Flag Management 69
5.1.1.10 Actions on Theories and Engines 70
5.1.1.11 Spy Events 72
5.1.1.12 Auxiliary predicates 72

5.1.2 Functors . 74
5.1.3 Operators . 74

5.2 ISOLibrary . 77
5.2.1 Predicates . 77

5.2.1.1 Type Testing 77
5.2.1.2 Atoms Processing 77

5.2.2 Functors . 79
5.2.3 Operators . 80
5.2.4 Flags . 80

5.3 IOLibrary . 81
5.3.1 Predicates . 81

5.3.1.1 General I/O 81
5.3.1.2 Helper Predicates 86
5.3.1.3 Random Generation of Numbers 88

5.4 ThreadLibrary . 88
5.4.1 Predicates . 89

5.4.1.1 Creating and deleting threads 89
5.4.1.2 Inter-thread communication via queues . . . 92
5.4.1.3 Thread synchronization via mutual exclusion 95

5.4.2 Examples . 97

2

5.4.2.1 Factorial of two numbers 97
5.4.2.2 Father and child communicating via a public

queue . 98
5.4.2.3 Father and children communicating via a pri-

vate queue 98
5.4.2.4 Synchronizing thread interactions 100
5.4.2.5 Flattening and manipulating lists 102

5.5 DCGLibrary . 102
5.5.1 Predicates . 105
5.5.2 Operators . 107

5.6 ISOIOLibrary . 107
5.6.1 Predicates . 109
5.6.2 Options . 120

5.7 SocketLibrary . 122
5.7.1 Predicates . 124
5.7.2 Operators . 127
5.7.3 Use from the Java side: term hierarchy extension . . . 127

6 tuProlog Exceptions 129
6.1 Exceptions in ISO Prolog . 129

6.1.1 Error classification . 131
6.2 Exceptions in tuProlog . 132

6.2.1 Examples . 132
6.2.2 Handling Java/.NET Exceptions from tuProlog 134

7 Multi-paradigm programming in Prolog and Java 135
7.1 Using Java from Prolog: JavaLibrary 135

7.1.1 Type mapping . 136
7.1.2 Creating and accessing objects: an overview 137

7.1.2.1 Examples . 140
7.1.2.2 Registering object bindings 144

7.1.3 Predicates . 145
7.1.3.1 Object creation, class compilation and method

invocation 145
7.1.3.2 Array management 148
7.1.3.3 Class path handling predicates 150
7.1.3.4 Helper predicates 150

7.1.4 Functors . 150
7.1.5 Operators . 150
7.1.6 Examples . 150

3

7.1.6.1 RMI Connection to a Remote Object 151
7.1.6.2 A Swing GUI 151
7.1.6.3 Database access via JDBC 151
7.1.6.4 Dynamic compilation 154

7.1.7 Handling Java Exceptions 155
7.1.7.1 Java exception examples 157

7.2 Using Prolog from Java: the Java API 161
7.2.1 A Taxonomy of Prolog types in Java 161

7.2.1.1 Further notes about Terms 162
7.2.2 Prolog engines, theories and libraries 164

7.2.2.1 Further notes about Prolog engines 164
7.2.3 Examples . 166

7.2.3.1 Appending lists 166
7.2.3.2 Exploiting a theory from clause list 169
7.2.3.3 A console-based Prolog interpreter 169

7.2.4 Support to relative paths in consulting Prolog sub-files 171
7.2.5 Registering object bindings 172
7.2.6 Capturing the Prolog output in Java 174

7.3 Augmenting Prolog via Java:
developing new libraries . 174
7.3.1 Syntactic conventions 176

7.3.1.1 Capturing exceptions raised in libraries . . . 178
7.3.1.2 Capturing the Java output in Prolog 178
7.3.1.3 Naming issues 178

7.3.2 Hybrid Java+Prolog libraries 182
7.3.3 Library loading issues 184
7.3.4 Library Name . 185

7.4 Augmenting Java via Prolog:
the P@J framework . 185
7.4.1 Term taxonomy . 187
7.4.2 Examples . 188

8 Multi-paradigm programming in Prolog and .NET 194
8.1 A bit of history . 194

8.1.1 tuProlog 2.1 and CSharpLibrary 194
8.1.2 tuProlog 2.1.3: CSharpLibrary + exceptions 195
8.1.3 tuProlog 2.2 and CLILibrary 195

8.2 IKVM Basics . 197
8.2.1 Dynamic vs. Static modality 197
8.2.2 Class loading issues 198

4

8.2.3 The other way: writing .NET applications in Java . . 199
8.3 tuProlog.NET now . 201

8.3.1 Highlights . 201
8.4 Using .NET from Prolog: OOLibrary 203

8.4.0.1 Motivation 203
8.4.0.2 Language Conventions 204
8.4.0.3 OOLibrary: predicates 206

8.4.1 Examples . 207
8.4.2 Handling .NET Exceptions 211

8.5 Using Prolog from .NET: the API 213
8.6 Augmenting Prolog via .NET:

developing new libraries . 213
8.6.1 Capturing exceptions raised in .NET libraries 217
8.6.2 Capturing the .NET output in Prolog 217

8.7 Augmenting .NET via Prolog:
the P@J framework revised 219
8.7.1 P@.NET via code generators 220

8.8 Putting everything together 221
8.8.1 Example: Multi-language TicTacToe 224

9 Multi-paradigm programming in Prolog and Android 228
9.1 Class path issues . 228

10 Version history 230
10.0.1 Version 2.0 . 230
10.0.2 From Version 2.0 to Version 2.0.1 231
10.0.3 From Version 2.0.1 to Version 2.1 233
10.0.4 From Version 2.1 to Version 2.2 236
10.0.5 From Version 2.2 to Version 2.3.0 236
10.0.6 From Version 2.3.0 to Version 2.3.1 238
10.0.7 From Version 2.3.1 to Version 2.4 238
10.0.8 From Version 2.4 to Version 2.5 238
10.0.9 From Version 2.5 to Version 2.6 238
10.0.10 From Version 2.6 to Version 2.7 239
10.0.11 From Version 2.7 to Version 2.7.2 239
10.0.12 From Version 2.7.2 to Version 2.8 239
10.0.13 From Version 2.8 to Version 2.9 240
10.0.14 From Version 2.9 to Version 2.9.2 241

10.1 Acknowledgments . 241

5

Chapter 1

What is tuProlog

tuProlog is an open-source, light-weight Prolog framework for distributed
applications and infrastructures, released under the LGPL license, available
from http://tuprolog.apice.unibo.it.

Originally developed in/upon Java, which still remains the main refer-
ence platform, tuProlog is currently available for several platforms/environments:

• plain JavaSE;

• Eclipse plugin;

• Android;

• Microsoft .NET.

While they all share the same core and libraries, the latter features an ad
hoc library which extends the multi-paradigm approach to virtually any
language available on the .NET platform (more on this in Chapter 8).

Unlike most Prolog programming environments, aimed at providing a
very efficient (yet monolithic) stand-alone Prolog system, tuProlog is explic-
itly designed to be minimal, dynamically configurable, straightforwardly in-
tegrated with Java and .NET so as to naturally support multi-paradigm/multi-
language programming (MPP), and easily deployable.

Minimality means that its core contains only the Prolog engine essentials
– roughly speaking, the resolution engine and some related basic mechanisms
– for as little as 155KB: any other feature is implemented in libraries. So,
each user can customize his/her prolog system to fit his/her own needs, and
no more: this is what we mean by tuProlog configurability—the necessary
counterpart of minimality.

6

http://tuprolog.apice.unibo.it

Libraries provide packages of predicates, functors and operators, and can
be loaded and unloaded in a tuProlog engine both statically and dynamically.
Several standard libraries are included in the tuProlog distribution, and are
loaded by default in the standard tuProlog configuration; however, users can
easily develop their own libraries either in several ways – just pure Prolog,
just pure Java1, or a mix of the two –, as we will discuss in Chapter 7.

Multi-paradigm programming is another key feature of tuProlog. In fact,
the tuProlog design was intentionally calibrated from the early stages to
support a straightforward, pervasive, multi-language/multi-paradigm inte-
gration, so as to enable users to:

• using any Java2 class, library, object directly from the Prolog code
(Section 7.1) with no need of pre-declarations, awkward syntax, etc.,
with full support of parameter passing from the two worlds, yet leaving
the two languages and computational models totally separate so as to
preserve a priori their own semantics—thus bringing the power of the
object-oriented platform (e.g. Java Swing, JDBC, etc) to the Prolog
world for free;

• using any Prolog engine directly from the Java/.NET code as one would
do with any other Java libraries/.NET assemblies (Section 7.2), again
with full support of parameter passing from the two worlds in a non-
intrusive, simple way that does not alter any semantics—thus bringing
the power of logic programming into virtually any Java/.NET appli-
cation;

• augmenting Prolog by defining new libraries (Section 7.3) either in
Prolog, or in the object-oriented language of the selected platform
(again, with a straightforward, easy-to-use approach based on reflec-
tion which avoids any pre-declaration, language-to-language mapping,
etc), or in a mix of both;

• augmenting Java3 by defining new Java methods in Prolog (the so-
called ‘P@J’ framework—Section 7.4), which exploits reflection and
type inference to provide the user with an easy-to-use way to imple-
ment Java methods declaratively.

1The .NET version of tuProlog supports other languages available on the .NET plat-
form: more on this topic in Chapter 8

2For the .NET version: any .NET class, library, object, etc.
3This feature is currently available only in the Java version: a suitable extension to the

.NET platform is under study.

7

Last but not least, easy deployability means that the installation require-
ments are minimal, and that the installation procedure is in most cases4 as
simple as copying one archive to the desired folder. Coherently, a Java-based
installation requires only a suitable Java Virtual Machine, and ‘installing’
is just copying a single JAR file somewhere—for as much as 474KB of disk
usage (yes, minimality is not just a claim here). Of course, other compo-
nents can be added (documentation, extra libraries, sources..), but are not
necessary for a standard everyday use. The file size is quite similar for
the Android platform – the single APK archive is 234KB – although an
Android-compliant install is performed due to Android requirements. The
install process is also quite the same on the .NET platform, although the
files are slightly larger. The Eclipse platform also requires a different pro-
cedure, since plugin installation have to conform to the requirements of the
Eclipse plugin manager: consequently, an update site was set up, where the
tuProlog plugin is available as an Eclipse feature. Due to these constraints,
file size increases to 1.5MB.

In order to manage all these platforms in a uniform way, a suitable
version numbering scheme was recently introduced:

• the fist two digits represent the engine version;

• the last (third) digit is platform-specific and accounts for version dif-
ferences which do not impact on the Prolog engine – that is, on the
tuProlog behaviour – but simply on graphical aspects or platform-
specific issues or bugs.

So, as long as the first two digits are the same, a tuProlog application is
guaranteed to behave identically on any supported platform.

Finally, tuProlog also supports interoperability with both Internet stan-
dard patterns (such as TCP/IP, RMI, CORBA) and coordination models
and languages. The latter aspect, in particular, is currently developed in
the context of the TuCSoN coordination infrastructure [11, 10], which pro-
vides logic-based, programmable tuple spaces (called tuple centres) as the
coordination media for distributed processes and agents.5

4Exceptions are the Eclipse plugin and the Android versions, which need to be installed
as required by the hosting platforms.

5An alternative infrastructure, LuCe [9], developed the same approach in a location-
unaware fashion: this infrastructure is currently no longer supported.

8

Chapter 2

Installing tuProlog

Quite obviously, the installation procedure depends on the platform of choice.
For Java, Microsoft .NET and Android, the first step is to manually down-
load the desired distribution (or even just the single binary file) from the
tuProlog web site, tuprolog.alice.unibo.it, or directly from the Google
code repository, tuprolog.googlecode.com; for Eclipse the procedure is
different, since the plug-in installation has to be performed via the Eclipse
Plugin Manager.

As a further alternative, users wishing to have a look at tuProlog and
trying it without installing anything on their computer can do so by ex-
ploiting the ‘Run via Java Web Start’ option, available on the tuProlog web
site.

2.1 Installation in Java

The complete Java distribution has the form of a single zip file which con-
tains everything (binaries, sources, documentation, examples, etc.) and un-
zips into a multi-level directory tree, similar to the following (only first-level
sub-dirs are shown):

9

2p

|---ant

|---bin

|---build

| |---archives

| |---classes

| |---release

| |---reports

| |---tests

|---doc

| |---javadoc

|---lib

|---src

|---test

| |---fit

| |---unit

|---tmp

|---test

An alternative distribution, without sources, is also available in the
Download section of the tuProlog repository: obviously, in this case only
a subset of the above folders is present (namely, only bin, doc, lib and
reports).

If you are only interested in the Java binaries, just look into the build/archives
directory, which contains two JAR files:

• 2p.jar, which contains everything you need to use tuProlog, such as
the core API, the Agent application, libraries, GUI, etc.; this is a
runnable JAR, that open the tuProlog IDE when double-clicked.

• tuprolog.jar, which contains only the core part of tuProlog, namely,
what you will need to include in a Java application project to be able
to access the tuProlog classes, and write multi-paradigm Java/Prolog
applications.

The other folders contain project-specific files: src contains all the
sources, doc all the documentation, lib the libraries used by the tuProlog
project, test the sources for the tuProlog test suite (partly as FIT test,
partly as JUnit tests), ant some Ant scripts to automate the build of parts
of the tuProlog project, etc.

10

2.2 Installation in .NET

The complete .NET distribution has also the form of a single zip file con-
taining everything; however, due to the automatic generation of tuProlog
.NET binaries via IKVM from Java (more on this in Chapter 8), the un-
zipped directory tree is simpler, as there are no sources (and therefore no
tests, no ant tasks, etc), except for OOLibrary and Conventions, which are
NET-specific and therefore written in C#. So, the resulting tree is similar
to the following:

2p

|---build

| |---examples

| |---lib

|---OOLibrary

| |---Conventions

| |---Fixtures

| |---OOLibrary

Here, too, an alternative distribution, without the OOLibrary and conven-
tions sources, is also available in the Download section of the tuProlog repos-
itory: again, only a subset of the above folders is present in this case.

The .NET binary, 2p.exe, can be found in the build folder.

2.3 Installation in Android

The Android distribution has the form of a single apk file, to be installed via
install mechanism provided by the Android OS. So, unless you are interested
in the implementation details, there should be no need to download the
whole project distribution. If, however, you like to do so, you will eventually
get to a directory tree similar to the following (only the most relevant first-
level sub-folders are shown):

2p

|---assets

|---bin

| |---classes

| |---res

|---doc

|---gen

|---libs

11

|---res

|---screenshots

|---src

The APK binary can be found into the bin folder.
As for the Java case, the other folders contain project-specific files: in

particular, src contains the sources, res the Android resources automat-
ically generated during the project build process, libs the libraries used
by this project—mainly, the tuprolog.jar file of the corresponding Java
version, imported here as an external dependency.

2.4 Installation in Eclipse

The installation procedure is different for the Eclipse platform due to the
need to conform to the Eclipse standard procedure for plug-in installation
via Plugin Manager. In order to exploit Eclipse’s built-in plugin installation
manager, a properly-configured update site must be added to the Eclipse
Update Site List first.

To do so:

1. open the Eclipse preferences (menu Window > Preferences) and choose
the Install/Update item and choose the Available Software Sites sub-
item. You might want to type “tuprolog” in the text field just to check
that no other update sites are already defined for it.

2. now click on the “Add” button to add a new software site: in the dialog
that appears, type a description in the upper field (e.g. “tuProlog
update site”), and enter the following URL in the lower field:
http://tuprolog.googlecode.com/svn/2p-plugin/trunk/tuPrologUpdateSite/

The dialog should now look as in Figure 2.1. Clicking OK, you should
now see the new site in the site list.

3. close this window, and go back to the main Eclipse window. Open the
Help menu and choose the Install new software item (Figure 2.2, top).
Select the tuProlog software by typing “tuProlog” in the filter text
field, or by scrolling the site list: after selecting the site, you should
see something like the window shown in Figure ??, bottom.

4. Now select the tuProlog feature by clicking on the checkbox. If multiple
feature versions are proposed (that depends whether you checked the
“show older versions” option), choose the version you prefer: if unsure,

12

Figure 2.1: Plugin installation: adding the Update Site, phase 1

select the most recent. Once selected, click Next: installation will take
place automatically.

The tuProlog plugin is now installed on your Eclipse system.

13

Figure 2.2: Plugin installation: adding the Update Site, phase 2

14

Chapter 3

Getting Started

tuProlog can be enjoyed from different perspectives:

1. as a Prolog user, you can exploit its Integrated Development Envi-
ronment (IDE) and Graphical User Interface (GUI) to consult, edit,
and run Prolog programs, as you would do with any other Prolog
system—and you can do so in any of the supported platforms (Java,
.NET, Android, Eclipse).

2. as a Java user, you can include tuProlog in any Java project, in Eclipse
or any other IDE of your choice, thus bringing the power of Artificial
Intelligence to the Java world; the tuProlog API provides many classes
and methods for exchanging data between the Java and the Prolog
worlds. If your goal is to build a hybrid Java+Prolog application to
be run from the Prolog side, the tuProlog plugin for Eclipse is probably
the most practical choice, as the tuProlog perspective provides all the
views over the Prolog world in an Eclipse-compliant, effective way.

3. as a .NET user, analogously, you can add tuProlog to any Visual
Studio project (including the related IKVM libraries, as detailed in
Chapter 8, or just manually compile your .NET application with the
necessary DLL files in the build path. The tuProlog API, which is
nearly identical to the Java one, provides for proper data exchange
between the .NET and the Prolog worlds.

4. finally, as an Android user, you can both enjoy the tuProlog app to
consult, edit, and run Prolog programs, as you would do with any other
Prolog system, and –perhaps more interestingly– exploit the tuProlog
Java API for developing Android applications, adding intelligence to
your next Android app.

15

3.1 tuProlog for the Prolog User

As a Prolog user/programmer, you might want to start running your existing
programs. There are three ways to do so:

• by using the graphical tuProlog GUI (both in Java and .NET)

• by using the console-based tuProlog CUI (Java only)

• by using the Agent class to execute a Prolog program in a ‘batch’
form—that is, running the program provided as a text file (Java only).

The first two forms are rather obvious: after starting the GUI/CUI, you
will get a rather standard graphical/character-based Prolog user interface
(Figure 3.1).

The GUI includes an editing pane with syntax highlighting, a toolbar
providing facilities to load/save/create theories, load/unload libraries, and
show/hide the the debug information window; at the bottom, the status bar
provides information, as detailed below.

The GUI can be launched either by double-clicking the tuProlog ex-
ecutable (2p.jar in Java, 2p.exe in .NET), or by manually issuing the
commands

java -cp dir /2p.jar alice.tuprologx.ide.GUILauncher

or
2p.exe

in .NET, respectively.
Analogously, the command-line CUIconsole (available in Java only) can

be launched by issuing the command:
java -cp dir /2p.jar alice.tuprologx.ide.CUIConsole

The CUIconsole can be quitted issuing the standard halt. command.
The third form, available in Java only, is basically an auxiliary tool to

batch-execute a Prolog program: it takes the name of a text file containing
a Prolog theory as its first (mandatory) argument and optionally the goal to
be solved as its second argument, then starts a new Prolog virtual machine,
performs the demonstration, and ends. The Agent tool is invoked from the
command line as follows:

java -cp dir /2p.jar alice.tuprolog.Agent theoryfile {goal }
For instance, if the file hello.pl contains the mini-theory:

go :- write(’hello, world!’), nl.

the following command causes its execution:
java -cp dir /2p.jar alice.tuprolog.Agent hello.pl go.

16

Figure 3.1: The standard tuProlog GUI and CUI. (The upper right button,
opening SpyFrame window, is present only from version 2.7.2 onwards; the
call tree tab view in the bottom dialog is to be included in version 2.7.3).

17

Figure 3.2: The tuProlog Agent tool.

Figure 3.3: Syntax error found when setting a theory.

resulting in the string hello, world! being printed on the standard output.
Alternatively, the goal to be proven can be embedded in the Prolog source
by means of the solve directive, as follows (Figure 3.2):

:- solve(go).

go :- write(’hello, world!’), nl.

Quite obviously, in this case no second argument is required.

3.1.1 Editing theories

The editing area allows multiple theories to be created and modified at the
same time, by allocating a tab with a new text area for each theory. The
text area provides syntax highlighting for comments, string and list literals,
and predefined predicates. Undo and Redo actions are supported through
the usual Ctrl+Z and Ctrl+Shift+Z key bindings.

18

Figure 3.4: Set theory operation succeeded.

The toolbar contains four buttons: two are used to upload/download a
theory to/from the Prolog engine, two support the classical Undo/Redo ac-
tions. Explicit uploading/downloading of theories to/from the Prolog engine
is a consequence of tuProlog’s choice to maintain a clear separation between
the engine and the currently-viewed theories: in this way,

• theories can be edited without affecting the engine content: they can
also be in an inconsistent state, since syntax checking is performed
only upon loading;

• changes in the current database performed by the Prolog program via
the assert/retract do not affect the theory shown in the editor,
which maintains the original user theory.

Accordingly, the set theory button uploads the text in the editor window to
the engine, while the get theory button downloads the current engine theory
(possibly changed by the program) from the engine to a new editor tab.

However, for the user convenience, a logical shortcut is provided that au-
tomatically uploads the current theory to the engine whenever a new query
is issued: obviously, if the theory is invalid, the query will not be executed.
Manual uploading is still needed whenever the theory in the editor window is

19

modified via other other means than the built-in editor—for instance, after
a consult/1 goal1, or via other editors.

The status bar at the bottom of the window reports information such
as the cursor line number or syntax errors when setting an invalid theory.
For instance, Figure 3.3 shows the error message due to a missing dot at
line 8, while Figure 3.4 shows the status message after the error has been
corrected, and the theory successfully uploaded.

3.1.2 Solving goals

The console at the bottom of the window contains the query textfield and a
multi-purpose, tabbed information panel.

The query textfield is where to write and execute queries: the leftmost
(Solve) button triggers the engine to find the first (and then the subsequent)
solution(s) interactively, while the rightmost (Solve All) button forces the
engine to find all the solutions at once. Pressing the Enter key in the
textfield has the same effect as pressing the Solve button.

The subsequent area below contains six panes:

• the solution pane shows the query solutions (see Figure 3.5): proper
control buttons are provided to iterate through multiple solutions;

• the binding and the all bindings panes show the variable bindings in
tabular form, for a single solution or for all solutions, respectively (see
Figure 3.6); here, too, proper control buttons are provided to clear
the bindings pane and export the tabular data in a convenient CSV
format;

• the output pane shows the output performed by the program via write

and other console I/O predicates (Figure 3.7). Please note that output
performed by Java methods – that is, methods invoked on Java objects
via JavaLibrary – are not captured and displayed in this view: for
further information on this topic, refer to Section 7.1. Again, control
buttons are provided to clear the output pane.

1If a Prolog theory contains an include directive or a consult command to load
other sub-files, tuProlog versions up to 2.6 require either the absolute sub-file name, or
a relative path referred to the engine’s base folder. From version 2.7 on, an enhanced
mechanism enables a Prolog file located in someOtherFolder (that is, a folder other than
the current one) to consult/include another file from the current folder by simply issuing
a consult(someOtherFile) command, delegating the tuProlog engine for searching the
file in all the subfolders of the current working folder. See also Section 7.2.4.

20

Figure 3.5: The solutions tab showing the query solution. (The call tree tab
view is to be included in version 2.7.3).

Figure 3.6: The bindings tab showing the bindings of query solution. (The
call tree tab view is to be included in version 2.7.3).

21

Figure 3.7: The output tab showing the query printing. (The call tree tab
view is to be included in version 2.7.3).

• the exceptions pane shows the exceptions raised during the query
demonstration: if exceptions are triggered, it gains focus automati-
cally and is color-highlighted for the user convenience (Figure 3.8).

Query and answers are stored in chronological order, and can be explored
by means of Up and Down arrow keys from the query input textfield.

The Stop button makes it possible to stop the engine if a computation
takes too long or a bug in the theory is causing an infinite loop.

With respect to this issue, it is worth noting that, unlike most Prolog
systems, tuProlog performs the so-called occur check systematically: so,
unify with occurs check/2 and =/2 behave identically (see Section 5.1).

3.1.3 Debugging support

Debug support in tuProlog is actually limited compared to other professional
Prolog systems: however, warnings and spy information are available.

To this end, the View Debug Information button opens the Debug window
which lists i) all the warnings, produced by events such as the attempt of
redefining a library predicate, and ii) the step-by-step spy information of
the engine computation during a goal demonstration.

22

Figure 3.8: The exceptions tab gaining focus and showing raised exceptions.
(The call tree tab view is to be included in version 2.7.3).

Warnings are always active, while spy notification has to be explicitly
enabled (and disabled) via the built-in spy/0 (nospy/0) predicate. Figure
3.9 shows an example of spy information for a goal: by default, information
is presented in a collapsed form, but single nodes (or all the nodes) can be
expanded using the toolbar buttons, to access more detailed information.

As of tuProlog 2.7.2, an alternative approach is available via the Spy
Frame window, which can be opened clicking on the top-right, tree-like
button (Figure 3.10). This window makes it possible to graphically reproduce
the solving process of the query, step-by-step: so, while the above debug view
operates in real time during the resolution, the SpyFrame operates after the
query has been solved, basically re-solving the same query one step at a
time2 Each time the Next button is pressed, the simulation advances of N
steps, where N is the number shown in the adjacent textfield (default 1).
Figure 3.10 shows some screenshots captured in different phases of a rather
complex demonstration.

2SpyFrame exploits its own Prolog engine and execution thread for this purpose, so no
side effects are caused in the main window even if the SpyFrame is closed unexpectedly.

23

Figure 3.9: Debug Information View after the execution of a goal.

Figure 3.10: The Spy Frame (new in tuProlog 2.7.2) showing a step-by-step
graphical view of the last-solved query.

24

Figure 3.11: The Library Manager window.

3.1.4 Dynamic library management

As anticipated above, tuProlog engines are dynamically extensible via li-
braries: each library can provide its own set of new built-in predicates and
functors, as well as a related theory. By default, the standard set of li-
braries is loaded into any newly-created engine, but the library set of each
engine can be easily modified via the Library Manager, which is displayed
by pressing the Open Library Manager button in the toolbar (Figure 3.11).

This dialog displays the list of the currently loaded libraries—by default,
BasicLibrary, IOLibrary, ISOLibrary, JavaLibrary. Other libraries can
be added by providing the fully qualified name of the library class in the
textfield, and pressing the Add button: the added library will be displayed
with an initial Unloaded status. The new library must be in the current class
path for tuProlog to find it; alternatively, the Browse.. button can be used
to locate a library class anywhere in the file system (furhter information
on class loading issues can be found in Section 7.3.3). Quite clearly, class
loading constraints also apply to any further class possibly needed by the
library, too: a library will not be added to the manager/loaded into the
engine if any of its required classes cannot be found.

The library manager takes into account the effects of load_library/1-/2

25

Figure 3.12: The configuration window.

and unload_library/1-/2 predicates/directives, too: so, for instance, after
a goal such as load_library(’TestLibrary’), test(X)., a new entry for
TestLibrary would be displayed.

If a library cannot be added, or its loading into the engine fails (for
instance, due to an invalid class name, or the class not being in the current
class paths, or a class not extending the alice.tuprolog.Library class,
etc.), an error message will be displayed in the status bar.

The bottom icons in Figure 3.11 are used to load and store preferences.
Finally, the config button in the tuProlog GUI opens the configuration dialog
(Figure 3.12), which provides access to a set of options and tunings.

3.1.5 Input from console

Until tuProlog 2.7.x, an input from the standard input stream (via some
IOLibrary/ISOIOLibrary input predicates, like read), could only be per-
formed in the CUIConsole: any attempt to perform keyboard reading on
the GUIConsole led to exception, because the underlying stdin was uncap-
tured by the Prolog GUI. This behaviour was partially fixed in tuProlog 2.8,
where such a read operation caused a dialog to appear.

In tuProlog 2.9, a new input tab has been added to the GUI Console
that enables the user to enter data from the keyboard without leaving the
main GUI, in a much more coherent way (Figure 3.13): data entry must be
confirmed by hitting the ENTER key on the keyboard (no mouse operation
is intentionally supported in this context, since keyboard the is obviously
already being used for data entry). Details about I/O handling can be found
in Section 5.3.

26

Figure 3.13: Keyboard input management from the GUI in tuProlog 2.9.

3.2 tuProlog for the Java Developer

As anticipated above, the Java developer can include tuProlog in any of his
projects, exploiting the tuProlog API to access the Prolog engine(s) from
his/her Java program: in fact, if your goal is just to embed intelligence in
your Java application, all you need is adding the tuprolog.jar library (or
the 2p.jar library in the case you need also the extra classes) to your Java
project, and develop normally—tuProlog will be seen as any other referenced
JAR archive.

However, if your goal is to develop a hybrid Java+Prolog application to
be run from the Prolog side – that is, where Java objects and methods are
called from a Prolog program – the tuProlog plugin for Eclipse is probably
the best choice, since it adds a specific tuprolog perspective specifically suited
for the needs of the Java/Prolog user (Figure 3.14).

This perspective is mainly designed to support the development of multi-
language, multi-paradigm applications (see Chapters 7, 8), but can also be
used as a standard Prolog console, writing (or loading) the Prolog theory
in the editor and writing the query in the proper textfield—although the
direct use of the tuProlog GUI is probably faster for this purpose.

To use tuProlog in Eclipse, one first needs to create a new tuProlog
project, and add a new theory file (*.pl) to the project. To this end:

• either select New > Project from the Package Explorer’s context menu,
then select the tuProlog item;

• or, select File > New > Other > tuProlog > tuProlog Project

from the main menu;

• or, press the New tuProlog Project buttons in the tuProlog toolbar
(Figure 3.15.

27

Figure 3.14: The tuProlog plugin GUI for Eclipse.

Figure 3.15: The tuProlog toolbar

In any case, a dialog appears (Figure 3.16) which prompts for the project
name (default: My Prolog Project) and the desired Prolog libraries (the
default set is proposed).

Pressing the New tuProlog File button, a dialog appears which asks for
the theory name (default: new theory.pl) and the file container, i.e. the
tuProlog project where the new file has to be added (Figure 3.17); this is
a mandatory argument. Pressing the Browse.. button, a new dialog pro-
poses the current tuProlog projects (Figure 3.18); again, the same result
can be achieved via menu selection (File > New > Other > tuProlog

> tuProlog Theory). After confirming, the tuProlog perspective automat-
ically opens (Figure 3.19). Again, the same result can be achieved via the

28

Figure 3.16: new tuProlog project

Figure 3.17: new tuProlog file

29

Figure 3.18: new tuProlog file > Browse...

Figure 3.19: the tuProlog perspective

30

Figure 3.20: opening the tuProlog perspective

Figure 3.21: executing queries, available views

Window > Open Perspective menu (Figure 3.20).
Once the theory has been written (or loaded), the theory file must be

saved, either clicking the save icon in the toolbar, or choosing the File >
Save option, or hitting CTRL+S on the keyboard; this is mandatory before
issuing any query. The query can be written in the bottom console, and is
executed either by pressing the Enter key, or by clicking the Solve button.

The query results are shown in different views (Figure 3.21):

• the tuProlog Console view reports the query results: the variable bind-
ings are also available pressing the All bindings button (Figure 3.22).

Figure 3.22: all variable bindings

31

Figure 3.23: AST view (expanded)

32

Figure 3.24: AST view (big term, expanded)

• the Output view shows the program output messages;

• the QueryList view on the left side reports the list of all he executed
queries, which can then be re-selected and re-executed in a click;

• the AST view shows the (dynamic) set of current clauses: pressing the
i icon, a graphical view of the Abstract Syntax Tree produced by the
Prolog parser is shown (Figures 3.23 and 3.24).

It is worth highlighting that multiple tuProlog engines can be handled
simultaneously: each engine can be selectively loaded with each own set of
libraries and theories, and can be separately queried. Moreover, in case of
undeclared terms, a direct warning is issued in the plugin editor (Figure
3.25).

3.3 tuProlog for the .NET Developer

Since tuProlog.NET is the result of an automatic conversion of the Java
bytecode via IKVM [1], everything in the Prolog user experience is identical
whether the .NET or the Java GUI is used (see Section 3.1 above).

33

Figure 3.25: warning for undeclared terms

The .NET developer, however, can exploit tuProlog in a .NET project,
accessing its API from a program written in potentially any language avail-
able in the .NET platform. Since no plugin is available for the de-facto
standard tool used by most .NET programmers (i.e., Microsoft Visual Stu-
dio), there is no immediate way to see tuProlog at work from within Visual
Studio; however, the tuProlog libraries can be easily added as external ref-
erences for exploiting the available APIs, as one would do with any other
library or third-party software.

For specific information about multi-paradigm programming in the con-
text of the .NET platform, please refer to Chapter 8.

3.4 tuProlog for the Android User

Since tuProlog is written in Java, the Java-Android developer wishing to
include tuProlog in an Android project can proceed very similarly to the
Java developer, adding tuprolog.jar to the project libraries—though no
plugin is available for this platform.

The Prolog-Android user, instead, can take advantage of the tuProlog
app, which shares the same core and libraries as the standard Java version,
the only difference being the redesigned GUI–with special regard to the
interaction with the file system.

Upon the application loading, the splash screen appears, immediately
followed in a few seconds by the Home Activity (Figure 3.26, left). At the
top, the name of the selected theory is reported (none at the beginning);
below is the query textfield. Four buttons enable the user to execute a query,
ask for the next solution (when applicable), show the current solution and
view the output console. The menu button triggers the pop-up shown in
Figure 3.26 (right), whose main feature is List Theories.

Indeed, in tuProlog for Android theories are not loaded directly in the
Prolog engine from the file system, as in the standard Java version: rather,
following Android recommendations, a theory database mediator is provided,

34

Figure 3.26: Home Activity (left) and its pop-up menu (right).

35

Figure 3.27: Theory database (left) and context menu (right)

Figure 3.28: Browsing theories (left) and theory operations (right)

so as to separate the loading of a theory from its validity check—the lat-
ter being performed only when the theory is actually selected for being
loaded into the engine. In this way, invalid theories (possibly incomplete,
work-in-progress theories) can seamlessly be stored in the theory database,
independently of their invalid nature.

So, theories of interest must be first loaded into the theory database
(Figure 3.27, left): then, the theory to be actually loaded will be selected
from such theories. More precisely, to add a theory to the database, the
menu option Import Theory to Database is provided (Figure 3.27, right): a
new activity opens that lets you browser the device’s file system (Figure 3.28,
left). Only the files that can be actually selected for addition to the theory
database are shown: after a theory is successfully imported, the activity
remembers the path for the next time, so as to make it faster to import
multiple files.

Theories in the database can be deleted, edited and exported in a (long-
)click, using the proper the context menu item (Figure 3.28, right). The

36

Figure 3.29: Theory editing (left) and query execution (right)

37

Figure 3.30: Keyboard input management in the case of a read operation
from the standard input.

export path can be changed via the Edit Export Path in the activity menu.
Editing (Figure 3.29, left) applies both to existing (loaded) files and

to brand new theories: to create a new theory, just click on New Theory
option in the context menu. After editing, to make your changes permanent,
the modified theory must be saved to the theory database by clicking the
Confirm button: alternatively, the back button discards changes.

When a valid theory is loaded, a query can be written in the input field
(Figure ??, right): an auto-complete mechanism is available which exploits
the previous queries to speed up the typing process. Pressing Execute, the
query solution is shown in the Solution tab, along with variable bindings;
any output performed by the application is available in the Output tab. If
multiple solutions exist, the Next button is enabled and can be exploited to
browse them—the corresponding output being shown in the Output tab.

Finally, if the query performs an operation requiring an input from the
standard input stream (e.g. via some of the IOLibrary/ISOIOLibrary input
predicates, like read), the app intercepts the request and shows the corre-
sponding dialog (Figure 3.30): this feature is available since tuProlog 2.8
(more on this in Section 5.3 on page 81).

38

3.4.1 Class loading issues: tuProlog 2.9 news

In all tuProlog versions until 2.8 (included), one limitation had always ap-
plied to the Android app: the lack of support for the dynamic loading of
user-defined libraries (via Library Manager) and classes (via JavaLibrary–
see Section 7.1).

The underlying reason lies in the architectural differences between the
Java SE and the Android platforms: although both platforms do load JAR
files, the inner structure of such archives is different, because a Java SE
archive includes the (zipped) .class files of each class, while an Android
archive mandatorily includes one single classes.dex file containing the
Android-compiled version of all classes. As a result, “standard” (i.e., JavaSE)
libraries and classes, normally found and loaded by the Java SE class loader,
cannot be found “as they are” by the Android loader, because the latter ex-
pects a different format.

To overcome this limitation, a specific behaviour needed to be put in
place for the Android version – while obviously guaranteeing that the code
unity that tuProlog had always preserved throughout its life among all its
supported platforms is not undermined.

For these reasons, effective tuProlog 2.9, a new, Android-specific class
loader has been added3that is able to handle “Android-JAR” archives, con-
taining the Android-specific (i.e., “dexed”) versions of the Java classes. Users
just have to generate the “dexed” JAR archive – by convention, named with
a suitable dexed suffix with respect to the original Java SE version: then,
the tuProlog loading engine will take care of the correct processing.

To convert a Java SE JAR archive into an Android JAR archive, the
Android SDK provides the dx tool:

dx --dex --output = dexed.jar input.jar

where input.jar is the Java SE JAR file, containing only the class files to
be converted, and dexed.jar is the generated Android JAR file, containing
the single classes.dex required. Of course, the resulting JAR must be put
into a directory that is accessible to the Android class loader.

Results are shown in the following screenshots. In Figure 3.31, a Java
library is loaded into the Android app: MyTestLibrary is loaded via the

3More precisely, the support for the new DexClassLoader has been added in-
side the loadLibrary method of the Library Manager: at the same time, the former
DynamiClassLoader class has been made abstract, and two new concrete platform-
dependent implementations have been added that encapsulate the platform-specific issues.

39

Figure 3.31: Loading and using a new Java library in the Android app:
notice the “dexed” JAR archive referenced in the load library/2 predicate.

load library predicate, referencing the MyTestLibrary dexed.jar An-
droid archive (left), and then executed (right).

Libraries can also be added/removed interactively, with the new activity
shown in Figure 3.32: the library JAR file can be either browsed (left) and
loaded (center), or, rather, entered and loaded via the Add button (right).

40

Figure 3.32: Loading and exploting a new Java library interactively, either
browsing the JAR file (top) or entering its name directly (bottom).

41

Chapter 4

tuProlog Basics

This chapter overviews the basic elements and structure of the tuProlog
engine, the tuProlog syntax, the programming support, and the built-in
predicates. Additional predicates, provided by libraries, are presented in
the next Chapter.

4.1 Predicate categories

In tuProlog, predicates are organized into three different categories:

built-in predicates — Built-in predicates are so-called because they are
defined at the tuProlog core level. They constitute a small but es-
sential set of predicates, that any tuProlog engine can count on. Any
modification possibly made to the engine before or during execution
will never affect the number and properties of these predicates.

library predicates — Predicates loaded in a tuProlog engine by means of
a tuProlog library are called library predicates. Since libraries can be
loaded and unloaded in tuProlog engines freely at the system start-
up, or dynamically at run time, the set of the library predicates of a
tuProlog engine is not fixed, and can change from engine to engine, as
well as at different times for the same engine. It is worth noting that
library predicates cannot be individually retracted: to remove an un-
desired library predicate from the engine, the whole library containing
that predicate needs to be unloaded.

Library predicates can be overridden by theory predicates, that is,
predicates defined in the user theory.

42

theory predicates — Predicates loaded in a tuProlog engine by means of
a tuProlog theory are called theory predicates. Since theories can be
loaded and unloaded in tuProlog engines freely at the system start-up,
or dynamically at execution time, the set of the theory predicates of
a tuProlog engine is not fixed, and can change from engine to engine,
as well as at different times for the same engine.

It is worth highlighting that, though they may seem similar, library
and theory predicates are not the same, and are handled differently by the
tuProlog engine. The difference between the two categories is both concep-
tual and structural.

Conceptually speaking, theory predicates should be used to axiomati-
cally represent domain knowledge at the time the proof is performed, while
library predicates should be used to represent what is required (procedural
knowledge, utility predicates) in order to actually and effectively perform
proofs in the domain of interest. So, from this viewpoint, library predicates
are devoted to represent more “stable” knowledge than theory predicates.
Correspondingly, library and theory predicates are represented differently
at run-time, and are handled differently by the engine—in particular, with
respect to the observation level for monitoring and debugging purposes. In
particular, library predicates are usually step over during debugging, co-
herently with their more stable (and expectedly well-tested) nature, while
theory predicates are step into in a detailed way during the controlled exe-
cution. This is also why all the tools in the tuProlog GUI show in a separate
way the theory predicates, on the one hand, and the loaded libraries and
predicates, on the other.

4.2 Syntax

The term syntax supported by tuProlog engine is basically ISO compliant,1

and accounts for several elements:

Atoms — There are four types of atoms: (i) a series of letters, digit, and/or
underscores, beginning with a lower-case letter; (ii) a series of one or
more characters from the set {#, $, &, *, +, -, ., /, :, <, =, >, ?, @, ^,
~}, provided it does not begin with /*; (iii) The special atoms [] and
{}; (iv) a single-quoted string.

1Some ISO directives, however, are not supported.

43

Variables — A variable name begins with a capital letter or the underscore
mark (), and consists of letters, digits, and/or underscores. A single
underscore mark denotes an anonymous variable.

Numbers — Integers and float are supported. The formats supported for
integer numbers are decimal, binary (with 0b prefix), octal (with 0o

prefix), and hexadecimal (with 0x prefix). The character code format
for integer numbers (prefixed by 0’) is supported only for alphanu-
meric characters, the white space, and characters in the set {#, $, &, *,
+, -, ., /, :, <, =, >, ?, @, ^, ~}. The range of integers is -2147483648
to 2147483647; the range of floats is -2E+63 to 2E+63-1. Floating
point numbers can be expressed also in the exponential format (e.g.
-3.03E-05, 0.303E+13). A minus can be written before any number
to make it negative (e.g. -3.03). Notice that the minus is the sign-
part of the number itself; hence -3.4 is a number, not an expression
(by contrast, - 3.4 is an expression).

Strings — A series of ASCII characters, embedded in quotes ’ or ". Within
single quotes, a single quote is written double (e.g, ’don’’t forget’).
A backslash at the very end of the line denotes continuation to the next
line, so that:
’this is \

a single line’

is equivalent to ’this is a single line’ (the line break is ignored).
Within a string, the backslash can be used to denote special characters,
such as \n for a newline, \r for a return without newline, \t for a tab
character, \\ for a backslash, \’ for a single quote, \" for a double
quote.

Compounds — The ordinary way to write a compound is to write the
functor (as an atom), an opening parenthesis, without spaces between
them, and then a series of terms separated by commas, and a closing
parenthesis: f(a,b,c). This notation can be used also for functors
that are normally written as operators, e.g. 2+2 = ’+’(2,2). Lists
are defined as rightward-nested structures using the dot operator ’.’;
so, for example:
[a] = ’.’(a,[])

[a,b] = ’.’(a,’.’(b,[]))

[a,b|c] = ’.’(a,’.’(b,c))

There can be only one | in a list, and no commas after it. Also curly
brackets are supported: any term enclosed with { and } is treated as

44

the argument of the special functor ’{}’: {hotel} = ’{}’(hotel),
{1,2,3} = ’{}’(1,2,3). Curly brackets can be used in the Definite
Clause Grammars theory.

Comments and Whitespaces – Whitespaces consist of blanks (including
tabs and formfeeds), end-of-line marks, and comments. A whitespace
can be put before and after any term, operator, bracket, or argu-
ment separator, as long as it does not break up an atom or number
or separate a functor from the opening parenthesis that introduces
its argument lists. For instance, atom p(a,b,c) can be written as
p(a , b , c), but not as p (a,b,c)). Two types of comments are
supported: one type begins with /* and ends with */, the other be-
gins with % and ends at the end of the line. Nested comments are not
allowed.

Operators — Operators are characterised by a name, a specifier, and a
priority. An operator name is an atom, which is not univocal: the
same atom can be an operator in more than one class, as in the case
of the infix and prefix minus signs. An operator specifier is a string
like xfy, which gives both its class (infix, postfix and prefix) and its
associativity: xfy specifies that the grouping on the right should be
formed first, yfx on the left, xfx no priority. An operator priority is
a non-negative integer ranging from 0 (max priority) and 1200 (min
priority).

Operators can be defined by means of either the op/3 predicate or di-
rective. No predefined operators are directly given by the raw tuProlog
engine, whereas a number of them is provided through libraries.

Commas — The comma has three functions: it separates arguments of
functors, it separates elements of lists, and it is an infix operator of
priority 1000. Thus (a,b) (without a functor in front) is a compound,
equivalent to ’,’(a,b).

Parentheses – Parentheses are allowed around any term. The effect of
parentheses is to override any grouping that may otherwise be imposed
by operator priorities. Operators enclosed in parentheses do not work
as operators; thus 2(+)3 is a syntax error.

4.3 Engine configurability

tuProlog engines provides four levels of configurability:

45

Libraries — At the first level, each tuProlog engine can be dynamically
extended by loading or unloading libraries. Each library can provide
a specific set of predicates, functors, and a related theory, which also
allows new flags and operators to be defined. Libraries can be either
pre-defined (see Chapter 5) or user-defined (see Section 7.3). A li-
brary can be loaded by means of the predicate load library (Prolog
side), or by means of the method loadLibrary of the tuProlog engine
(Java/.NET side).

Directives — At the second level, directives can be given by means of the
:-/1 predicate, which is natively supported by the engine, and can
be used to configure and use a tuProlog engine (set prolog flag/1,
load library/1, include/1, solve/1), format and syntax of read-
terms2 (op/3). Directives are described in detail in Section 4.5.6.

Flags — At the third level, tuProlog supports the dynamic definition of
flags to describe relevant aspects of libraries, predicates and evaluable
functors. A flag is identified by a name (an alphanumeric atom), a list
of possible values, a default value, and a boolean value specifying if the
flag value can be modified. Dynamically, a flag value can be changed
(if modifiable) with a new value included in the list of possible values.

Theories — The fourth level of configurability is given by theories: a the-
ory is a text consisting of a sequence of clauses and/or directives.
Clauses and directives are terminated by a dot, and are separated by
a whitespace character. Theories can be loaded or unloaded by means
of suitable library predicates, which are described in Chapter 5.

4.4 Exception support

As of version 2.2, tuProlog supports exceptions according to the ISO Prolog
standard (ISO/IEC 13211-1) published in 1995. Details about the exception
handling mechanism are provided in Chapter 6: this short overview is func-
tional to the understanding of the built-in predicate specification presented
in the next Section.

According to the ISO specification, an error is a particular circumstance
that interrupts the execution of a Prolog program: when a Prolog engine
encounters an error, it raises an exception, which is supposed to transfer the

2As specified by the ISO standard, a read-term is a Prolog term followed by an end
token, composed by an optional layout text sequence and a dot.

46

execution flow to a suitable exception handler, exiting atomically from any
number of nested execution contexts.

4.4.1 Error classification

When an exception is raised, the relevant error information is also trans-
ferred by instantiating a suitable error term.

The ISO Prolog standard prescribes that such a term follows the pattern
error(Error term, Implementation defined term) where Error term is
constrained by the standard to a pre-defined set of values (the error cate-
gories), and Implementation defined term is an optional term providing
implementation-specific details. Ten error categories are defined:

1. instantiation error: when the argument of a predicate or one of its
components is an unbound variable, which should have been instanti-
ated. Example: X is Y+1 when Y is not instantiated at the time is/2

is evaluated.

2. type error(ValidType, Culprit): when the type of an argument
of a predicate, or one of its components, is instantiated, but is bound
to the wrong type of data. ValidType represents the expected data
type (one of atom, atomic, byte, callable, character, evaluable,
in byte, in character, integer, list, number, predicate indicator,
variable), and Culprit is the actual (wrong) type found. Example:
a predicate expecting months to be represented as integers in the range
1–12 called with an argument like march instead of 3.

3. domain error(ValidDomain, Culprit): when the argument type is
correct, but its value falls outside the expected range. ValidDomain is
one of character code list, not empty list, not less than zero,
close option, io mode, operator priority, operator specifier,
flag value, prolog flag, read option, write option, source sink,
stream, stream option, stream or alias, stream position,
stream property. Example: a predicate expecting months as above,
called with an out-of-range argument like 13.

4. existence error(ObjectType, ObjectName): when the referenced
object does not exist. ObjectType is the type of the unexisting object
(one of procedure, source sink, or stream), and ObjectName is the
missing object’s name. Example: trying to access an unexisting file like
usr/goofy leads to an existence error(stream, ’usr/goofy’).

47

5. permission error(Operation, ObjectType, Object): whenever
Operation (one of access, create, input, modify, open, output, or
reposition) is not allowed on Object , of type ObjectType (one of
binary stream, past end of stream, operator, private procedure,
static procedure, source sink, stream, text stream, flag).

6. representation error(Flag): when an implementation-defined limit,
whose category is given by Flag (one of character, character code,
in character code, max arity, max integer, min integer), is vio-
lated during execution.

7. evaluation error(Error): when the evaluation of a function pro-
duces an out-of-range value (one of float overflow, int overflow,
undefined, underflow, zero divisor).

8. resource error(Resource): when the Prolog engine does not have
enough resources to complete the execution of the goal. Resource can
be any term useful to describe the situation. Examples: maximum
number of opened files reached, no further available memory, etc.

9. syntax error(Message): when data read from an external source
have an incorrect format or cannot be processed for some reason.
Message can be any term useful to describe the situation.

10. system error: any other unexpected error not falling into the previous
categories.

4.5 Built-in predicates

This section contains a comprehensive list of the built-in predicates, that
is the predicated defined directly in the tuProlog core, both for efficiency
reasons and because they directly affect the resolution process.

Following an established convention, the symbol + in front of an argu-
ment means an input argument, - means output argument, ? means in-
put/output argument, @ means input argument that must be bound.

4.5.1 Control management

• true/0

true is true.

48

• fail/0

fail is false.

• ’,’/2

’,’(First,Second) is true if and only if both First and Second are
true.

• !/0

! is true. All choice points between the cut and the parent goal are
removed. The effect is a commitment to use both the current clause
and the substitutions found at the point of the cut.

• ’$call’/1

’$call’(Goal) is true if and only if Goal represents a true goal. It is
not opaque to cut.

Template: ’$call’(+callable term)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) when G is a variable. Goal is the goal where the prob-
lem occurred, ArgNo indicates the argument that caused the problem
(obviously, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) when G is not a callable goal.
Goal is the goal where the problem occurred, ArgNo indicates the ar-
gument that caused the problem (obviously, 1), ValidType is the data
type expected for G (here, callable), while Culprit is the actual data
type found.

• halt/0

halt terminates a Prolog demonstration, exiting the Prolog thread and
returning to the parent system. In any of the tuProlog user interfaces
– the GUI, the character-based console, the Android app, the Eclipse
plugin – the effect is to terminate the whole application (including
Eclipse itself).

• halt/1

halt(X) terminates a Prolog demonstration, exiting the Prolog thread
and returning the provided int value to the parent system. In any of
the tuProlog user interfaces – the GUI, the character-based console,
the Android app, the Eclipse plugin – the effect is to terminate the
whole application (including Eclipse itself).

49

Template: halt(+int)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) when X is a variable. Goal is the goal where the prob-
lem occurred, ArgNo indicates the argument that caused the problem
(obviously, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) when X is not an integer num-
ber. Goal is the goal where the problem occurred, ArgNo indicates the
argument that caused the problem (obviously, 1), ValidType is the
data type expected for X (here, integer), while Culprit is the actual
data type found.

4.5.2 Term unification and management

• is/2

is(X, Y) is true iff X is unifiable with the value of the expression Y.

Template: is(?term, @evaluable)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) when Y is a variable. Goal is the goal where the prob-
lem occurred, ArgNo indicates the argument that caused the problem
(here, 2).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) when Y is not a valid expres-
sion. Goal is the goal where the problem occurred, ArgNo indicates the
argument that caused the problem (clearly, 2), ValidType is the data
type expected for G (here, evaluable), while Culprit is the actual
data type found.

Exception: error(evaluation error (Error), evaluation error(

Goal, ArgNo, Error)) when an error occurs during the evaluation of
Y. Goal is the goal where the problem occurred, ArgNo indicates the
argument that caused the problem (clearly, 2), and Error is the error
occurred (e.g. zero division in case of a division by zero).

• ’=’/2

’=’(X, Y) is true iff X and Y are unifiable.

Template: ’=’(?term, ?term)

• ’\=’/2

’\=’(X, Y) is true iff X and Y are not unifiable.

50

Template: ’\=’(?term, ?term)

• ’$tolist’/2

’$tolist’(Compound, List) is true if Compound is a compound term,
and in this case List is list representation of the compound, with the
name as first element and all the arguments as other elements.

Template: ’$tolist’(@struct, -list)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) when Struct is a variable. Goal is the goal where
the problem occurred, ArgNo indicates the argument that caused the
problem (obviously, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) when Struct is not a struc-
ture. Goal is the goal where the problem occurred, ArgNo indicates
the argument that caused the problem (clearly, 1), ValidType is the
data type expected for G (here, struct), while Culprit is the actual
data type found.

• ’$fromlist’/2

’$fromlist’(Compound, List) is true if Compound unifies with the
list representation of List.

Template: ’$fromlist’(-struct, @list)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) when List is a variable. Goal is the goal where the
problem occurred, ArgNo indicates the argument that caused the prob-
lem (obviously, 2).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) when List is not a list. Goal
is the goal where the problem occurred, ArgNo indicates the argument
that caused the problem (clearly, 2), ValidType is the data type ex-
pected for G (here, list), while Culprit is the actual data type found.

• copy term/2

copy term(Term1, Term2) is true iff Term2 unifies with the a renamed
copy of Term1.

Template: copy term(?term, ?term)

• ’$append’/2

’$append’(Element, List) is true if List is a list, with the side
effect that the Element is appended to the list.

51

Template: ’$append’(+term, @list)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) when List is a variable. Goal is the goal where the
problem occurred, ArgNo indicates the argument that caused the prob-
lem (obviously, 2).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) when List is not a list. Goal
is the goal where the problem occurred, ArgNo indicates the argument
that caused the problem (clearly, 2), ValidType is the data type ex-
pected for G (here, list), while Culprit is the actual data type found.

4.5.3 Knowledge base management

• ’$find’/2

’$find’(Clause, Clauses) is true if Clause is a clause and Clauses

is a list: as a side effect, all the database clauses matching Clause are
appended to the Clauses list.

Template: ’$find’(@clause, @list)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) when Clause is a variable. Goal is the goal where
the problem occurred, ArgNo indicates the argument that caused the
problem (here, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) when Clauses is not a list.
Goal is the goal where the problem occurred, ArgNo indicates the ar-
gument that caused the problem (here, 2), ValidType is the data type
expected for Clauses (i.e. list), while Culprit is the actual data
type found.

• abolish/1

abolish(Predicate) completely wipes out the dynamic predicate match-
ing Predicate.

Template: abolish(@term)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) when Predicate is a variable. Goal is the goal where
the problem occurred, ArgNo indicates the argument that caused the
problem (obviously, 1).

52

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) when Predicate is not a struc-
ture. Goal is the goal where the problem occurred, ArgNo indicates
the argument that caused the problem (obviously, 1), ValidType is
the data type expected for Predicate, while Culprit is the actual
data type found.

• asserta/1

asserta(Clause) is true, with the side effect that the clause Clause

is added to the beginning of database.

Template: asserta(@clause)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) when Clause is a variable. Goal is the goal where
the problem occurred, ArgNo indicates the argument that caused the
problem (obviously, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) when Clause is not a struc-
ture. Goal is the goal where the problem occurred, ArgNo indicates
the argument that caused the problem (obviously, 1), ValidType is
the data type expected for Clause, while Culprit is the actual data
type found.

• assertz/1

assertz(Clause) is true, with the side effect that the clause Clause

is added to the end of the database.

Template: assertz(@clause)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) when Clause is a variable. Goal is the goal where
the problem occurred, ArgNo indicates the argument that caused the
problem (obviously, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) when Clause is not a struc-
ture. Goal is the goal where the problem occurred, ArgNo indicates
the argument that caused the problem (obviously, 1), ValidType is
the data type expected for Clause, while Culprit is the actual data
type found.

• ’$retract’/1

’$retract’(Clause) is true if the database contains at least one

53

clause unifying with Clause; as a side effect, the clause is removed
from the database. It is not re-executable. Please do not confuse this
built-in predicate with the retract/1 predicate of BasicLibrary.

Template: ’$retract’(@clause)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) when Clause is a variable. Goal is the goal where
the problem occurred, ArgNo indicates the argument that caused the
problem (obviously, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) when Clause is not a struc-
ture. Goal is the goal where the problem occurred, ArgNo indicates
the argument that caused the problem (obviously, 1), ValidType is
the data type expected for Clause, while Culprit is the actual data
type found.

4.5.4 Operator and flag management

• op/3

op(Priority, Specifier, Operator) is true. It always succeeds,
modifying the operator table as a side effect. If Priority is 0, then
Operator is removed from the operator table; else, Operator is added
to the operator table, with priority (lower binds tighter) Priority

and associativity determined by Specifier. If an operator with the
same Operator symbol and the same Specifier already exists in the
operator table, the predicate modifies its priority according to the
specified Priority argument.

Template: op(+integer, +specifier, @atom or atom list)

• flag list/1

flag list(FlagList) is true and FlagList is the list of the flags
currently defined in the engine.

Template: flag list(-list)

• set prolog flag/2

set prolog flag(Flag, Value) is true, and as a side effect associates
Value with the flag Flag, where Value is a value that is within the
implementation defined range of values for Flag.

Template: set prolog flag(+flag, @nonvar)

54

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if either Flag or Value is a variable. Goal is the goal
where the problem occurred, ArgNo indicates the argument that caused
the problem (1 or 2).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if Flag is not a structure or
Value is not ground. Goal is the goal where the problem occurred,
ArgNo indicates the argument that caused the problem (1 or 2), Valid-
Type is the data type expected for Flag or Value (struct or ground,
respectively), while Culprit is the actual wrong term (either Flag or
Value).

Exception: error(domain error(ValidDomain, Culprit), domain

error(Goal, ArgNo, ValidDomain, Culprit)) if Flag is undefined
in the engine or Value is not admissible for Flag. Goal is the goal
where the problem occurred, ArgNo indicates the argument that caused
the problem (1 or 2), ValidDomain is the data type expected for Flag
or Value (prolog flag or flag value, respectively), while Culprit

is the actual wrong term (either Flag or Value).

Exception: error(permission error(Operation, ObjectType,

Culprit), permission error(Goal, Operation, ObjectType,

Culprit, Message)) if Flag is unmodifiable. Goal is the goal where
the problem occurred, Operation is the operation that caused the
problem (modify), ObjectType is the data type of the flag (i.e. flag),
Culprit is the actual wrong term (clearly, Flag), and Message adds
possible extra info (by convention, the atom 0 is used when no extra
info exists).

• get prolog flag/2

get prolog flag(Flag, Value) is true iff Flag is a flag supported
by the engine and Value is the value currently associated with it. It
is not re-executable.

Template: get prolog flag(+flag, ?term)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) when Flag is a variable. Goal is the goal where the
problem occurred, ArgNo indicates the argument that caused the prob-
lem (obviously, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) when Flag is not a structure.

55

Goal is the goal where the problem occurred, ArgNo indicates the ar-
gument that caused the problem (clearly, 1), ValidType is the data
type expected for G (here, struct), while Culprit is the actual data
type found.

Exception: error(domain error(ValidDomain, Culprit), domain

error(Goal, ArgNo, ValidDomain, Culprit)) if Flag is undefined
in the engine. Goal is the goal where the problem occurred, ArgNo indi-
cates the argument that caused the problem (clearly, 1), ValidDomain
is the domain expected for G (here, prolog flag), while Culprit is
the actual wrong term found.

4.5.5 Library management

• load library/1

load library(LibraryName) is true if LibraryName is the name of
a tuProlog library available for loading. As side effect, the specified
library is loaded by the engine. Actually LibraryName is the full name
of the Java class providing the library.

Template: load library(@string)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) when LibraryName is a variable. Goal is the goal
where the problem occurred, ArgNo indicates the argument that caused
the problem (obviously, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) when LibraryName is not an
atom. Goal is the goal where the problem occurred, ArgNo indicates
the argument that caused the problem (obviously, 1), ValidType is
the data type expected for LibraryName, while Culprit is the actual
data type found.

Exception: error(existence error(ObjectType, Culprit),

existence error(Goal, ArgNo, ObjectType, Culprit, Message))

when the library LibraryName does not exist. Goal is the goal where
the problem occurred, ArgNo indicates the argument that caused the
problem (obviously, 1), ObjectType is the data type expected for the
missing object (here, class), while Culprit is the actual data type
found and Message provides extra info about the occurred error.

• unload library/1

unload library(LibraryName) is true if LibraryName is the name of

56

a library currently loaded in the engine. As side effect, the library is
unloaded from the engine. Actually LibraryName is the full name of
the Java class providing the library.

Template: unload library(@string)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) when LibraryName is a variable. Goal is the goal
where the problem occurred, ArgNo indicates the argument that caused
the problem (obviously, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) when LibraryName is not an
atom. Goal is the goal where the problem occurred, ArgNo indicates
the argument that caused the problem (obviously, 1), ValidType is
the data type expected for LibraryName, while Culprit is the actual
data type found.

Exception: error(existence error(ObjectType, Culprit),

existence error(Goal, ArgNo, ObjectType, Culprit, Message))

when the library LibraryName does not exist. Goal is the goal where
the problem occurred, ArgNo indicates the argument that caused the
problem (obviously, 1), ObjectType is the data type expected for the
missing object (here, class), while Culprit is the actual data type
found and Message provides extra info about the occurred error.

4.5.6 Directives

Directives are basically queries immediately executed at the theory load
time. Unlike other Prolog systems, tuProlog does not allow directives to
be composed—that is, each directive must contain only one query: multiple
directives require multiple queries. The standard directives are as follows:

• :- op/3

op(Priority, Specifier, Operator) adds Operator to the opera-
tor table, with priority (lower binds tighter) Priority and associativ-
ity determined by Specifier.

Template: op(+integer, +specifier, @atom or atom list)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if any of Priority, Specifier or Operator is a vari-
able. Goal is the goal where the problem occurred, ArgNo indicates
the argument that caused the problem (one of 1, 2, 3).

57

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if Priority is not an integer
number, or Specifier is not an atom, or Operator is not an atom or
a list of atoms. Goal is the goal where the problem occurred, ArgNo
indicates the argument that caused the problem (one of 1, 2 or 3),
ValidType is the data type expected for the Culprit, and Culprit is
the actual cause of the problem.

Exception: error(domain error(ValidDomain, Culprit), domain

error(Goal, ArgNo, ValidDomain, Culprit)) if the type of Priority
and Specifier is correct, but their values are not admissible for the
operator priority or associativity, respectively. Goal is the goal where
the problem occurred, ArgNo indicates the argument that caused the
problem (1 or 2), ValidDomain is the data type expected for Culprit,
and Culprit is the actual wrong term found.

• :- flag/4

flag(FlagName, ValidValuesList, DefaultValue, IsModifiable)

adds to the engine a new flag, identified by the FlagName name,
which can assume only the values listed in ValidValuesList with
DefaultValue as default value, and that can be modified if IsModifiable
is true.

Template: flag(@string, @list, @term, @true, false)

• :- initialization/1

initialization(Goal) sets the starting goal to be executed just after
the theory has been consulted.

Template: initialization(@goal)

• :- solve/1

Synonym for initialization/1. Deprecated.

Template: solve(@goal)

• :- load library/1

The directive version of the load library/1 predicate documented in
Subsection 4.5.5. However, here errors in the library name do not raise
exceptions—rather, the directive simply fails, yielding no effect at all.

• :- include/1

include(Filename) immediately loads the theory contained in the
file specified by Filename. Again, errors in the file name do not raise
exceptions: the directive simply fails, yielding no effect at all.

58

Until tuProlog 2.6, an include directive trying to load another Pro-
log file in a directory other than the current one will fail, unless the
absolute sub-file name, or a relative path referred to the engine’s base
folder is provided. From tuProlog 2.7 on, an enhanced mechanism
has been included that enables tuProlog to look for Prolog files in all
the subfolders of the project base folder. So, for instance, the file
someOtherFile located in someOtherFolder (a folder other than the
current one) can be loaded from the current folder by simply issuing
a consult(someOtherFile) command. See also Section 7.2.4.

Template: include(@string)

• :- consult/1

Synonym for include/1. Deprecated.

Template: consult(@string)

59

Chapter 5

tuProlog Libraries

Libraries are the means by which tuProlog achieves its fundamental charac-
teristics of minimality and configurability. The engine is by design choice a
minimal, purely-inferential core, which includes only the small set of built-
ins introduced in the previous Chapter. Any other piece of functionality,
in the form of predicates, functors, flags and operators, is delivered by li-
braries, which can be loaded and unloaded to/from the engine at any time:
each library can provide a set of predicates, functors and a related theory,
which can be used to define new flags and operators.

The dynamic loading of libraries can be exploited, for instance, to bound
the availability of some functionalities to a specific use context, as in the
following example:

% println/1 is defined in ExampleLibrary

run_test(Test, Result) :- run(Test, Result),

load_library(’ExampleLibrary’),

println(Result),

unload_library(ExampleLibrary’).

The tuProlog distribution include several standard libraries, some of which
are loaded by default into any engine–although it is always possible both to
create an engine with no pre-loaded libraries, and to create an engine with
different (possibly user-defined or third party) pre-loaded libraries.

The fundamental libraries, loaded by default, are the following:

BasicLibrary (class alice.tuprolog.lib.BasicLibrary) — provides the
most common Prolog predicates, functors, and operators. In order to
separate computation and interaction aspects, no I/O predicates are
included.

60

ISOLibrary (class alice.tuprolog.lib.ISOLibrary) — provides pred-
icates and functors that are part of the built-in section in the ISO
standard [6], and are not provided as built-ins or by BasicLibrary.

IOLibrary (class alice.tuprolog.lib.IOLibrary) — provides the clas-
sic Prolog I/O predicates, except for the ISO-I/O ones.

JavaLibrary (class alice.tuprolog.lib.JavaLibrary) — provides pred-
icates and functors to support multi-paradigm programming between
Prolog and Java, enabling a complete yet easy access to the object-
oriented world of Java from tuProlog: features include the creation
and access of both existing and new objects, classes, and resources. In
the .NET version of tuProlog, this library is replaced1 by OOLibrary,
which extends the multi-paradigm programming approach to virtually
any language supported by the .NET platform (Chapter 8.)

ThreadLibrary (class alice.tuprolog.lib.ThreadLibrary) — provides
primitives for explicit multi-thread handling (new in tuProlog 2.7).

Other libraries included in the standard tuProlog distribution, but not loaded
by default, are the following:

DCGLibrary (class alice.tuprolog.lib.DCGLibrary) — provides sup-
port for Definite Clause Grammar, an extension of context free gram-
mars used for describing natural and formal languages.

ISOIOLibrary (class alice.tuprolog.lib.ISOIOLibrary) — extends the
above IOLibrary by adding ISO-compliant I/O predicates (new in
tuProlog 2.6).

SocketLibrary (class alice.tuprolog.lib.SocketLibrary) — provides
support for TCP and UDP sockets (new in tuProlog 2.7).

Further libraries exist that are not included in the standard tuProlog dis-
tribution, because of their very specific domain: they can be downloaded
from the tuProlog site, along with their documentation. Among these, for
instance, RDFLibrary (class alice.tuprolog.lib.RDFLibrary) provides
predicates and functors to handle RDF documents, etc.

The next Sections present the predicates, functors, operators and flag
of each library, as well as the dependencies from other libraries, except for
JavaLibrary, which is discussed in detail in the context of multi-paradigm

1Actually, integrated: please see Chapter 8 for details.

61

programming (Chapter 7, or Chapter 8 for its counterpart in .NET). Through-
out this chapter, string means a single-quoted or double-quoted string, as
detailed in Chapter 4, while expr means an evaluable expression—that is,
a term that can be interpreted as a value by some library functors.

5.1 BasicLibrary

5.1.1 Predicates

5.1.1.1 Type Testing

• constant/1

constant(X) is true iff X is a constant value.

Template: constant(@term)

• number/1

number(X) is true iff X is an integer or a float.

Template: number(@term)

• integer/1

integer(X) is true iff X is an integer.

Template: integer(@term)

• float/1

float(X) is true iff X is an float.

Template: float(@term)

• atom/1

atom(X) is true iff X is an atom.

Template: atom(@term)

• compound/1

compound(X) is true iff X is a compound term, that is neither atomic
nor a variable.

Template: compound(@term)

• var/1

var(X) is true iff X is a variable.

Template: var(@term)

62

• nonvar/1

nonvar(X) is true iff X is not a variable.

Template: nonvar(@term)

• atomic/1

atomic(X) is true iff X is atomic (that is is an atom, an integer or a
float).

Template: atomic(@term)

• ground/1

ground(X) is true iff X is a ground term.

Template: ground(@term)

• list/1

list(X) is true iff X is a list.

Template: list(@term)

5.1.1.2 Term Creation, Decomposition and Unification

• ’=..’/2 : univ
’=..’(Term, List) is true if List is a list consisting of the functor
and all arguments of Term, in this order.

Template: ’=..’(?term, ?list)

• functor/3

functor(Term, Functor, Arity) is true if the term Term is a com-
pound term, Functor is its functor, and Arity (an integer) is its arity;
or if Term is an atom or number equal to Functor and Arity is 0.

Template: functor(?term, ?term, ?integer)

• arg/3

arg(N, Term, Arg) is true if Arg is the Nth arguments of Term (count-
ing from 1).

Template: arg(@integer, @compound, -term)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if N or Term are variables. Goal is the goal where
the problem occurred, ArgNo indicates the argument that caused the
problem (here, 1 or 2).

63

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if N is not an integer number
or Term is not a compound term. Goal is the goal where the problem
occurred, ArgNo indicates the argument that caused the problem (here,
1 or 2), ValidType is the expected data type (integer or compound,
respectively), Culprit is the wrong term found (either N or Term).

Exception: error(domain error(ValidDomain, Culprit), domain

error(Goal, ArgNo, ValidDomain, Culprit)) if N is an int value
less than 1. Goal is the goal where the problem occurred, ArgNo indi-
cates the argument that caused the problem (clearly, 1), ValidDomain
is the expected domain (greater than zero, respectively), Culprit
is the wrong term found (obviously, N).

• text term/2

text term(Text, Term) is true iff Text is the text representation of
the term Term.

Template: text term(?text, ?term)

• text concat/3

text concat(Text1, Text2, TextDest) is true iff TextDest is the
text resulting by appending the text Text2 to Text1.

Template: text concat(@string, @string, -string)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if Text1 or Text2 are variables. Goal is the goal where
the problem occurred, ArgNo indicates the argument that caused the
problem (here, 1 or 2).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if Text1 or Text2 are not atoms.
Goal is the goal where the problem occurred, ArgNo indicates the argu-
ment that caused the problem (here, 1 or 2), ValidType is the expected
data type (e.g. atom), Culprit is the wrong term found (either Text1
or Text2).

• num atom/2

num atom(Number, Atom) succeeds iff Atom is the atom representation
of the number Number

Template: number codes(+number, ?atom)

Template: number codes(?number, +atom)

64

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if Atom is a variable and Number

is not a number, or, viceversa, if Atom is not an atom. Goal is the goal
where the problem occurred, ArgNo indicates the argument that caused
the problem (here, 1 or 2), ValidType is the expected data type for the
wrong argument (e.g. either number or atom), Culprit is the wrong
term found (either Number or Atom).

Exception: error(domain error(ValidType, Culprit), domain

error(Goal, ArgNo, ValidDomain, Culprit)) if Atom is an atom
that does not represent a number. Goal is the goal where the prob-
lem occurred, ArgNo indicates the argument that caused the problem
(clearly, 2), ValidDomain is the expected domain for the wrong argu-
ment (num atom), Culprit is the wrong term found (obviously Atom).

5.1.1.3 Occurs Check

When the process of unification takes place between a variable S and a term
T , the first thing a Prolog engine should do before proceeding is to check
that T does not contain any occurrences of S. This test is known as occurs
check [12] and is conceptually necessary to prevent the unification of terms
such as s(X) and X, for which no finite common instance exists; yet, the test
implies a performance drawback that impacts on the speed and efficiency of
the resolution process.

For this reason, most Prolog implementations omit the occur check from
their unification algorithm, providing a specific predicate for “augmented
unification” (that is, unification including the occurs check), to be used
when the programmer wants to stay on the safer side:

• unify with occurs check/2

unify with occurs check(X, Y) is true iff X and Y are unifiable.

Template: unify with occurs check(?term, ?term)

tuProlog is an exception in this panorama, because its unification algorithm
always performs the occurs check : the unify with occurs check/2 is sup-
ported, but is merely a renaming of the standard =/2 unification operator.

As a consequence, goals like X=f(X), that may loop or be solved in an
“infinite” form in other Prolog systems2, are occurs-checked in tuProlog,
leading to a failure.

2SICStus Prolog, for instance, succeeds returning a solution like
X=f(f(f(f(f(f(f(f(f(f(...)))))))))), where the inner dots “hide” the infinite
self-substitution.

65

5.1.1.4 Expression and Term Comparison

• expression comparison (generic template: pred(@expr, @expr)):
’=:=’, ’=\=’, ’>’, ’<’, ’>=’, ’=<’;

• term comparison (generic template: pred(@term, @term)):
’==’, ’\==’, ’@>’, ’@<’, ’@>=’, ’@=<’.

5.1.1.5 Finding Solutions

• findall/3

findall(Template, Goal, List) is true if and only if List uni-
fies with the list of values to which a variable X not occurring in
Template or Goal would be instantiated by successive re-executions of
call(Goal), X = Template after systematic replacement of all vari-
ables in X by new variables.

Template: findall(?term, +callable term, ?list)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if G is a variable. Goal is the goal where the prob-
lem occurred, ArgNo indicates the argument that caused the problem
(obviously, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if G is not a callable goal (for
instance, it is a number). Goal is the goal where the problem oc-
curred, ArgNo indicates the argument that caused the problem (here,
2), ValidType is the expected data type (callable), Culprit is the
wrong term found.

• bagof/3

bagof(Template, Goal, Instances) is true if Instances is a non-
empty list of all terms such that each unifies with Template for a
fixed instance W of the variables of Goal that are free with respect to
Template. The ordering of the elements of Instances is the order in
which the solutions are found.

Template: bagof(?term, +callable term, ?list)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if G is a variable. Goal is the goal where the prob-
lem occurred, ArgNo indicates the argument that caused the problem
(obviously, 1).

66

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if G is not a callable goal (for
instance, it is a number). Goal is the goal where the problem oc-
curred, ArgNo indicates the argument that caused the problem (here,
2), ValidType is the expected data type (callable), Culprit is the
wrong term found.

• setof/3

setof(Template, Goal, List) is true if List is a sorted non-empty
list of all terms that each unifies with Template for a fixed instance
W of the variables of Goal that are free with respect to Template.

Template: setof(?term, +callable term, ?list)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if G is a variable. Goal is the goal where the prob-
lem occurred, ArgNo indicates the argument that caused the problem
(obviously, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if G is not a callable goal (for
instance, it is a number). Goal is the goal where the problem oc-
curred, ArgNo indicates the argument that caused the problem (here,
2), ValidType is the expected data type (callable), Culprit is the
wrong term found.

5.1.1.6 Control Management

• (->)/2 : if-then
’->’(If, Then) is true if and only if If is true and Then is true for
the first solution of If.

• (;)/2 : if-then-else
’;’(Either, Or) is true iff either Either or Or is true.

• call/1

call(Goal) is true if and only if Goal represents a goal which is true.
It is opaque to cut.

Template: call(+callable term)

Exception: the same as the built-in predicate $call/1; the exception
results to be raised by the auxiliary predicate call guard(G).

67

• once/1

once(Goal) finds exactly one solution to Goal. It is equivalent to
call((Goal, !)) and is opaque to cuts.

Template: once(@goal)

• repeat/0

Whenever backtracking reaches repeat, execution proceeds forward
again through the same clauses as if another alternative has been
found.

Template: repeat

• ’\+’/1 : not provable
’\+’(Goal) is the negation predicate and is opaque to cuts. That is,
’\+’(Goal) is like call(Goal) except that its success or failure is the
opposite.

Template: ’\+’(@goal)

• not/1

The predicate not/1 has the same semantics and implementation as
the predicate ’\+’/1.

Template: not(@goal)

5.1.1.7 Clause Retrieval, Creation and Destruction

Every Prolog engine lets programmers modify its logic database during ex-
ecution by adding or deleting specific clauses. The ISO standard [6] dis-
tinguishes between static and dynamic predicates: only the latter can be
modified by asserting or retracting clauses. While typically the dynamic/1
directive is used to indicate whenever a user-defined predicate is dynami-
cally modifiable, tuProlog engines work differently, establishing two default
behaviors: library predicates are always of a static kind; every other user-
defined predicate is dynamic and modifiable at runtime. The following
list contains library predicates used to manipulate the knowledge base of
a tuProlog engine during execution.

• clause/2

clause(Head, Body) is true iff Head matches the head of a dynamic
predicate, and Body matches its body. The body of a fact is considered
to be true. Head must be at least partly instantiated.

Template: clause(@term, -term)

68

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if Head is a variable. Goal is the goal where the prob-
lem occurred, ArgNo indicates the argument that caused the problem
(obviously, 1).

• assert/1

assert(Clause) is true and adds Clause to the end of the database.

Template: assert(@term)

Exception: the same as the built-in predicate assertz/1.

• retract/1

retract(Clause) removes from the knowledge base a dynamic clause
that matches Clause (which must be at least partially instantiated).
Multiple solutions are given upon backtracking.

Template: retract(@term)

Exception: the same as the built-in predicate $retract/1; the ex-
ception is raised by the auxiliary predicate retract guard(Clause).

• retractall/1

retractall(Clause) removes from the knowledge base all the dy-
namic clauses matching with Clause (which must be at least partially
instantiated).

Template: retractall(@term)

Exception: the same as the built-in predicate $retract/1; the ex-
ception is raised by the auxiliary predicate retract guard(Clause).

5.1.1.8 Operator Management

• current op/3

current op(Priority, Type, Name) is true iff Priority is an inte-
ger in the range [0, 1200], Type is one of the fx, xfy, yfx, xfx values
and Name is an atom, and as side effect it adds a new operator to the
engine operator list.

Template: current op(?integer, ?term, ?atom)

5.1.1.9 Flag Management

• current prolog flag/2

current prolog flag(Flag,Value) is true if the value of the flag
Flag is Value

69

Template: current prolog flag(?atom,?term)

• flag list/1

flag list(FlagList) unifies FlagList with the list of currently ac-
tive flags.

Template: flag list(?term)

5.1.1.10 Actions on Theories and Engines

• set theory/1

set theory(TheoryText) is true iff TheoryText is the text represen-
tation of a valid tuProlog theory, with the side effect of setting it as
the new theory of the engine.

Template: set theory(@string)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if TheoryText is a variable. Goal is the goal where
the problem occurred, ArgNo indicates the argument that caused the
problem (obviously, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if TheoryText is not an atom
(i.e. a string). Goal is the goal where the problem occurred, ArgNo
indicates the argument that caused the problem (here, 1), ValidType
is the expected data type (atom), Culprit is the wrong term found.

Exception: error(syntax error(Message), syntax error(Goal,

Line, Position, Message)) if TheoryText is not a valid theory.
Goal is the goal where the problem occurred, Message describes the
error occurred, Line and Position report the error line and position
inside the theory, respectively; if the engine is unable to provide either
of them, the corresponding value is set to -1.

• add theory/1

add theory(TheoryText) is true iff TheoryText is the text represen-
tation of a valid tuProlog theory, with the side effect of appending it
to the current theory of the engine.

Template: add theory(@string)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if TheoryText is a variable. Goal is the goal where
the problem occurred, ArgNo indicates the argument that caused the
problem (obviously, 1).

70

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if TheoryText is not an atom
(i.e. a string). Goal is the goal where the problem occurred, ArgNo
indicates the argument that caused the problem (here, 1), ValidType
is the expected data type (atom), Culprit is the wrong term found.

Exception: error(syntax error(Message), syntax error(Goal,

Line, Position, Message)) if TheoryText is not a valid theory.
Goal is the goal where the problem occurred, Message describes the
error occurred, Line and Position report the error line and position
inside the theory, respectively; if the engine is unable to provide either
of them, the corresponding value is set to -1.

• get theory/1

get theory(TheoryText) is true, and TheoryText is the text repre-
sentation of the current theory of the engine.

Template: get theory(-string)

• agent/1

agent(TheoryText) is true, and spawns a tuProlog agent with the
knowledge base provided as a Prolog textual form in TheoryText (the
goal is described in the knowledge base).

Template: agent(@string)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if TheoryText is a variable. Goal is the goal where
the problem occurred, ArgNo indicates the argument that caused the
problem (obviously, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if TheoryText is not an atom
(i.e. a string). Goal is the goal where the problem occurred, ArgNo
indicates the argument that caused the problem (here, 1), ValidType
is the expected data type (atom), Culprit is the wrong term found.

• agent/2

agent(TheoryText, Goal) is true, and spawn a tuProlog agent with
the knowledge base provided as a Prolog textual form in TheoryText,
and solving the query Goal as a goal.

Template: agent(@string, @term)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if either TheoryText or G is a variable. Goal is the

71

goal where the problem occurred, ArgNo indicates the argument that
caused the problem (1 or 2).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if TheoryText is not an atom
(i.e. a string) or G is not a structure. Goal is the goal where the
problem occurred, ArgNo indicates the argument that caused the prob-
lem (clearly, 1 or 2), ValidType is the expected data type (atom or
struct), Culprit is the wrong term found.

5.1.1.11 Spy Events

During each demonstration, the engine notifies to interested listeners so-
called spy events, containing informations on its internal state, such as the
current subgoal being evaluated, the configuration of the execution stack
and the available choice points. The different kinds of spy events currently
corresponds to the different states which the virtual machine realizing the
tuProlog’s inferential core can be found into. Init events are spawned when-
ever the machine initialize a subgoal for execution; Call events are generated
when a choice must be made for the next subgoal to be executed; Eval events
represent actual subgoal evaluation; finally, Back events are notified when
a backtracking occurs during the demonstration process.

• spy/0

spy is true and enables spy event notification.

Template: spy

• nospy/0

nospy is true and disables spy event notification.

Template: nospy

5.1.1.12 Auxiliary predicates

The following predicates are provided by the library’s theory.

• member/2

member(Element, List) is true iff Element is an element of List

Template: member(?term, +list)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if List is not a list. Goal is
the goal where the problem occurred, ArgNo indicates the argument

72

that caused the problem (clearly, 2), ValidType is the expected data
type (list), Culprit is the wrong term found.

• length/2

length(List, NumberOfElements) is true in three different cases: (1)
if List is instantiated to a list of determinate length, then Length will
be unified with this length; (2) if List is of indeterminate length and
Length is instantiated to an integer, then List will be unified with a
list of length Length and in such a case the list elements are unique
variables; (3) if Length is unbound then Length will be unified with
all possible lengths of List.

Template: member(?list, ?integer)

• append/3

append(What, To, Target) is true iff Target list can be obtained by
appending the To list to the What list.

Template: append(?list, ?list, ?list)

• reverse/2

reverse(List, ReversedList) is true iff ReversedList is the re-
verse list of List.

Template: reverse(+list, -list)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if List is not a list. Goal is
the goal where the problem occurred, ArgNo indicates the argument
that caused the problem (here, 1), ValidType is the expected data
type (list), Culprit is the wrong term found.

• delete/3

delete(Element, ListSource, ListDest) is true iff ListDest list
can be obtained by removing Element from the list ListSource.

Template: delete(@term, +list, -list)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if ListSource is not a list.
Goal is the goal where the problem occurred, ArgNo indicates the ar-
gument that caused the problem (here, 2), ValidType is the expected
data type (list), Culprit is the wrong term found.

73

• element/3

element(Pos, List, Element) is true iff Element is the Pos-th ele-
ment of List (element numbering starts from 1).

Template: element(@integer, +list, -term)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if List is not a list. Goal is
the goal where the problem occurred, ArgNo indicates the argument
that caused the problem (here, 2), ValidType is the expected data
type (list), Culprit is the wrong term found.

• quicksort/3

quicksort(List, ComparisonPredicate, SortedList) is true iff
SortedList contains the same elements as List, but sorted according
to the criterion defined by ComparisonPredicate, which can be one
of the following: ’=:=’/2 (expression equality), ’=\\=’/2 (expression
inequality), ’>’/2 (greater than), ’<’/2 (less than), ’>=’/2 (greater
than or equals to), ’=<’/2 (equals to or less than), ’==’/2 (term
equality), ’\\==’/2 (term inequality), ’@>’/2 (term greater than),
’@<’/2 (term less than), ’@>=’/2 (term greater than or equals to),
’@=<’/2 (term equals to or less than).

Template: quicksort(@list, @pred, -list)

5.1.2 Functors

The following functors for expression evaluation (with the usual semantics)
are provided:

• unary functors: +, -, ~, +

• binary functors: +, -, *, \, **, <<, >>, /\, \/

5.1.3 Operators

The full list of BasicLibrary operators, with their priority and associativity,
is reported in Table 5.1.

Expression comparison operators (=:= (equal), =\= (different), > (greater),
< (smaller), >= (greater or equal), <= (smaller or equal)) can raise the fol-
lowing exceptions:

• Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if any of the arguments is a variable. Goal is the

74

goal where the problem occurred, ArgNo indicates the argument that
caused the problem (1 or 2).

• Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if any of the two arguments is
not an evaluable expression. Goal is the goal where the problem oc-
curred, ArgNo indicates the argument that caused the problem (1 or
2), ValidType is the expected data type (evaluable), Culprit is the
wrong term found.

• Exception: error(evaluation error(Error), evaluation error(

Goal, ArgNo, Error)) if an error occurs during the evaluation of any
of the two arguments. Goal is the goal where the problem occurred,
ArgNo indicates the argument that caused the problem (1 or 2), Error
is the error occurred (e.g. zero division in case of a division by
zero).

75

Name Assoc. Prio.

:- fx 1200

:- xfx 1200

?- fx 1200

; xfy 1100

-> xfy 1050

, xfy 1000

not fy 900

\+ fy 900

= xfx 700

\= xfx 700

== xfx 700

\== xfx 700

@> xfx 700

@< xfx 700

@=< xfx 700

@>= xfx 700

=:= xfx 700

=\= xfx 700

> xfx 700

< xfx 700

>= xfx 700

=< xfx 700

is xfx 700

=.. xfx 700

+ yfx 500

- yfx 500

/\ yfx 500

\/ yfx 500

∗ yfx 400

/ yfx 400

// yfx 400

>> yfx 400

<< yfx 400

>> yfx 400

∗∗ xfx 200

^ xfy 200

\\ fx 200

- fy 200

Table 5.1: BasicLibrary operators.

76

5.2 ISOLibrary

Library Dependencies: BasicLibrary.
This library contains all the predicates and functors of the Prolog ISO

standard and that are not provided directly at the tuProlog core or at the
BasicLibrary levels.

5.2.1 Predicates

5.2.1.1 Type Testing

• bound/1

bound(Term) is a synonym for the ground/1 predicate defined in Ba-
sicLibrary.

Template: bound(+term)

• unbound/1

unbound(Term) is true iff Term is not a ground term.

Template: unbound(+term)

5.2.1.2 Atoms Processing

• atom length/2

atom length(Atom, Length) is true iff the integer Length equals the
number of characters in the name of atom Atom.

Template: atom length(+atom, ?integer)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if Atom is a variable. Goal is the goal where the prob-
lem occurred, ArgNo indicates the argument that caused the problem
(clearly, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if Atom is not an atom. Goal

is the goal where the problem occurred, ArgNo indicates the argument
that caused the problem (here, 1), ValidType is the expected data
type (atom), Culprit is the wrong term found.

• atom concat/3

atom concat(Start, End, Whole) is true iff the Whole is the atom
obtained by concatenating the characters of End to those of Start.

77

If Whole is instantiated, then all decompositions of Whole can be ob-
tained by backtracking.

Template: atom concat(?atom, ?atom, +atom)

Template: atom concat(+atom, +atom, -atom)

• sub atom/5

sub atom(Atom, Before, Length, After, SubAtom) is true iff Sub-
Atom is the sub atom of Atom of length Length that appears with
Before characters preceding it and After characters following. It is
re-executable.

Template: sub atom(+atom, ?integer, ?integer, ?integer, ?atom)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if Atom is not an atom. Goal

is the goal where the problem occurred, ArgNo indicates the argument
that caused the problem (here, 1), ValidType is the expected data
type (atom), Culprit is the wrong term found.

• atom chars/2

atom chars(Atom,List) succeeds iff List is a list whose elements are
the one character atoms that in order make up Atom.

Template: atom chars(+atom, ?character list)

Template: atom chars(-atom, ?character list)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if Atom is a variable and List

is not a list, or, conversely, List is a variable and Atom is not an
atom. Goal is the goal where the problem occurred, ArgNo indicates
the argument that caused the problem (either 1 or 2), ValidType is
the expected data type (atom or list, respectively), Culprit is the
wrong term found.

• atom codes/2

atom codes(Atom, List) succeeds iff List is a list whose elements
are the character codes that in order correspond to the characters
that make up Atom.

Template: atom codes(+atom, ?character code list)

Template: atom chars(-atom, ?character code list)

78

• char code/2

char code(Char, Code) succeeds iff Code is a the character code that
corresponds to the character Char.

Template: char code(+character, ?character code)

Template: char code(-character, +character code)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if Code is a variable and Char

is not a character (that is, an atom of length 1), or, conversely, Char is
a variable and Code is not an integer. Goal is the goal where the prob-
lem occurred, ArgNo indicates the argument that caused the problem
(either 1 or 2), ValidType is the expected data type (character or
integer, respectively), Culprit is the wrong term found.

• number chars/2

number chars(Number, List) succeeds iff List is a list whose ele-
ments are the one character atoms that in order make up Number.

Template: number chars(+number, ?character list)

Template: number chars(-number, ?character list)

• number codes/2

number codes(Number, List) succeeds iff List is a list whose ele-
ments are the codes for the one character atoms that in order make
up Number.

Template: number codes(+number,?character code list)

Template: number codes(-number,?character code list)

5.2.2 Functors

• Trigonometric functions: sin(+expr), cos(+expr), atan(+expr).

• Logarithmic functions: exp(+expr), log(+expr), sqrt(+expr).

• Absolute value functions: abs(+expr), sign(+Expr).

• Rounding functions: floor(+expr), ceiling(+expr), round(+expr),
truncate(+expr), float(+expr), float integer part(+expr),
float fractional part(+expr).

• Integer division functions: div(+expr, +expr), mod(+expr, +expr),
rem(+expr, +expr).

79

5.2.3 Operators

The full list of ISOLibrary operators, with their priority and associativity,
is reported in Table 5.2.

Name Assoc. Prio.

mod yfx 400

div yfx 300

rem yfx 300

sin fx 200

cos fx 200

sqrt fx 200

atan fx 200

exp fx 200

log fx 200

Table 5.2: ISOLibrary operators.

5.2.4 Flags

The full list of ISOLibrary flags, with their admissible and default values, is
reported in Table 5.3.

Flag Name Possible

Values

Default

Value

Modifiable

bounded true true no

max integer 2147483647 2147483647 no

min integer -2147483648 -2147483648 no

integer rounding function down down no

char conversion off off no

debug off off no

max arity 2147483647 2147483647 no

undefined predicates fail fail no

double quotes atom atom no

Table 5.3: ISOLibrary flags. Any tentative to modify unmodifiable flags will
result into a permission error exception.

80

5.3 IOLibrary

Library Dependencies: BasicLibrary.
The IOLibrary defines the classical Prolog I/O predicates; further ISO-

compliant I/O predicates are provided by ISOIOLibrary (Section 5.6).

5.3.1 Predicates

5.3.1.1 General I/O

• see/1

see(StreamName) is used to create/open an input stream; the predi-
cate is true iff StreamName is a string representing the name of a file to
be created or accessed as input stream, or the string stdin selecting
current standard input as input stream.

NB: from tuProlog 2.8, the graphic atom is also allowed to set the
input from the user GUI. Please note that such a choice somehow hard-
wires your code to work under the tuProlog GUIConsole or Android
app only.

Template: see(@atom)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if StreamName is a variable. Goal is the goal where
the problem occurred, ArgNo indicates the argument that caused the
problem (obviously, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if StreamName is not an atom.
Goal is the goal where the problem occurred, ArgNo indicates the ar-
gument that caused the problem (here, 1), ValidType is the expected
data type (atom), Culprit is the wrong term found.

Exception: error(domain error(ValidDomain, Culprit), domain

error(Goal, ArgNo, ValidDomain, Culprit)) if StreamName is not
the name of an accessible file. Goal is the goal where the problem oc-
curred, ArgNo indicates the argument that caused the problem (clearly,
1), ValidDomain is the expected domain (stream), Culprit is the
wrong term found.

• seen/0

seen is used to close the input stream previously opened; the predicate
is true iff the closing action is possible

81

Template: seen

• seeing/1

seeing(StreamName) is true iff StreamName is the name of the stream
currently used as input stream.

Template: seeing(?term)

• tell/1

tell(StreamName) is used to create/open an output stream; the pred-
icate is true iff StreamName is a string representing the name of a file to
be created or accessed as output stream, or the string stdout selecting
current standard output as output stream.

Template: tell(@atom)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if StreamName is a variable. Goal is the goal where
the problem occurred, ArgNo indicates the argument that caused the
problem (obviously, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if StreamName is not an atom.
Goal is the goal where the problem occurred, ArgNo indicates the ar-
gument that caused the problem (here, 1), ValidType is the expected
data type (atom), Culprit is the wrong term found.

Exception: error(domain error(ValidDomain, Culprit), domain

error(Goal, ArgNo, ValidDomain, Culprit)) if StreamName is not
the name of an accessible file. Goal is the goal where the problem oc-
curred, ArgNo indicates the argument that caused the problem (clearly,
1), ValidDomain is the expected domain (stream), Culprit is the
wrong term found.

• told/0

told is used to close the output stream previously opened; the predi-
cate is true iff the closing action is possible.

Template: told

• telling/1

telling(StreamName) is true iff StreamName is the name of the stream
currently used as input stream.

Template: telling(?term)

82

• put/1

put(Char) puts the character Char on current output stream; it is
true iff the operation is possible.

Template: put(@char)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if Char is a variable. Goal is the goal where the prob-
lem occurred, ArgNo indicates the argument that caused the problem
(obviously, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if Char is not a character, i.e.
an atom of length 1. Goal is the goal where the problem occurred,
ArgNo indicates the argument that caused the problem (1), ValidType
is the expected data type (char), Culprit is the wrong term found.

Exception: error(permission error (Operation, ObjectType,

Culprit), permission error(Goal, Operation, ObjectType,

Culprit, Message)) if it was impossible to write on the output stream.
Goal is the goal where the problem occurred, Operation is the oper-
ation to be performed (here, output), ObjectType is the type of the
target object (stream), Culprit is the name of the output stream,
and Message provides extra info about the occurred error.

• get0/1

get0(Value) is true iff Value is the next character (whose code can
span on the entire ASCII codes) available from the input stream, or -1
if no characters are available; as a side effect, the character is removed
from the input stream.

Template: get0(?charOrMinusOne)

Exception: error(permission error (Operation, ObjectType,

Culprit), permission error(Goal, Operation, ObjectType,

Culprit, Message)) if it was impossible to read from the input stream.
Goal is the goal where the problem occurred, Operation is the oper-
ation to be performed (here, input), ObjectType is the type of the
target object (stream), Culprit is the name of the input stream, and
Message provides extra info about the occurred error.

• get/1

get(Value) is true iff Value is the next character (whose code can
span on the range 32..255 as ASCII codes) available from the input

83

stream, or -1 if no characters are available; as a side effect, the char-
acter (with all the characters that precede this one not in the range
32..255) is removed from the input stream.

Template: get(?charOrMinusOne)

Exception: error(permission error (Operation, ObjectType,

Culprit), permission error(Goal, Operation, ObjectType,

Culprit, Message)) if it was impossible to read from the input stream.
Goal is the goal where the problem occurred, Operation is the oper-
ation to be performed (here, input), ObjectType is the type of the
target object (stream), Culprit is the name of the input stream, and
Message provides extra info about the occurred error.

• tab/1

tab(NumSpaces) inserts NumSpaces space characters (ASCII code 32)
on output stream; the predicate is true iff the operation is possible.

Template: tab(+integer)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if NumSpaces is a variable. Goal is the goal where
the problem occurred, ArgNo indicates the argument that caused the
problem (obviously, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if NumSpaces is not an integer
number. Goal is the goal where the problem occurred, ArgNo indicates
the argument that caused the problem (here, 1), ValidType is the ex-
pected data type (integer), Culprit is the wrong term found.

Exception: error(permission error (Operation, ObjectType,

Culprit), permission error(Goal, Operation, ObjectType,

Culprit, Message)) if it was impossible to write on the output stream.
Goal is the goal where the problem occurred, Operation is the oper-
ation to be performed (here, output), ObjectType is the type of the
target object (stream), Culprit is the name of the output stream,
and Message provides extra info about the occurred error.

• read/1

read(Term) is true iff Term is Prolog term available from the input
stream. The term must ends with the . character; if no valid terms
are available, the predicate fails. As a side effect, the term is removed
from the input stream.

84

Template: read(?term)

Exception: error(permission error (Operation, ObjectType,

Culprit), permission error(Goal, Operation, ObjectType,

Culprit, Message)) if it was impossible to read from the input stream.
Goal is the goal where the problem occurred, Operation is the oper-
ation to be performed (here, input), ObjectType is the type of the
target object (stream), Culprit is the name of the input stream, and
Message provides extra info about the occurred error.

Exception: error(syntax error(Message), syntax error(Goal,

Line, Position, Message)) if a syntax error occurred when reading
from the input stream. Goal is the goal where the problem occurred,
Message is the string read from the input that caused the error, while
Line and Position are not applicable in this case and therefore default
to -1.

• write/1

write(Term) writes the term Term on current output stream. The
predicate fails if the operation is not possible.

Template: write(@term)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if Term is a variable. Goal is the goal where the prob-
lem occurred, ArgNo indicates the argument that caused the problem
(obviously, 1).

Exception: error(permission error (Operation, ObjectType,

Culprit), permission error(Goal, Operation, ObjectType,

Culprit, Message)) if it was impossible to write on the output stream.
Goal is the goal where the problem occurred, Operation is the oper-
ation to be performed (here, output), ObjectType is the type of the
target object (stream), Culprit is the name of the output stream,
and Message provides extra info about the occurred error.

• print/1

print(Term) writes the term Term on current output stream, removing
apices if the term is an atom representing a string. The predicate fails
if the operation is not possible.

Template: print(@term)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if Term is a variable. Goal is the goal where the prob-

85

lem occurred, ArgNo indicates the argument that caused the problem
(obviously, 1).

Exception: error(permission error (Operation, ObjectType,

Culprit), permission error(Goal, Operation, ObjectType,

Culprit, Message)) if it was impossible to write on the output stream.
Goal is the goal where the problem occurred, Operation is the oper-
ation to be performed (here, output), ObjectType is the type of the
target object (stream), Culprit is the name of the output stream,
and Message provides extra info about the occurred error.

• nl/0

nl writes a new line control character on current output stream. The
predicate fails if the operation is not possible.

Template: nl

Exception: error(permission error (Operation, ObjectType,

Culprit), permission error(Goal, Operation, ObjectType,

Culprit, Message)) if it was impossible to write on the output stream.
Goal is the goal where the problem occurred, Operation is the oper-
ation to be performed (here, output), ObjectType is the type of the
target object (stream), Culprit is the name of the output stream,
and Message provides extra info about the occurred error.

5.3.1.2 Helper Predicates

• text from file/2

text from file(File, Text) is true iff Text is the text contained in
the file whose name is File.

Template: text from file(+string, -string)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if File is a variable. Goal is the goal where the prob-
lem occurred, ArgNo indicates the argument that caused the problem
(obviously, 1).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if File is not an atom. Goal

is the goal where the problem occurred, ArgNo indicates the argument
that caused the problem (here, 1), ValidType is the expected data
type (atom), Culprit is the wrong term found.

Exception: error(existence error(ObjectType, Culprit),

existence error(Goal, ArgNo, ObjectType, Culprit, Message))

86

if File does not exist. Goal is the goal where the problem occurred,
ArgNo indicates the argument that caused the problem (clearly, 1),
ObjectType is the type of the missing object (stream), Culprit is the
wrong term found and Message provides an error message (here, most
likely file not found).

• agent file/1

agent file(FileName) is true iff FileName is an accessible file con-
taining a Prolog knowledge base, and as a side effect it spawns a
tuProlog agent provided with that knowledge base.

Template: agent file(+string)

Exception: the predicate maps onto the above text from file(File,

Text) with File=FileName, so the same exceptions are raised.

• solve file/2

solve file(FileName, Goal) is true iff FileName is an accessible file
containing a Prolog knowledge base, and as a side effect it solves the
query Goal according to that knowledge base.

Template: solve file(+string, +goal)

Exception: the predicate maps onto the above text from file(File,

Text) with File=FileName, so the same exceptions are raised.

Moreover, it also raises the following specific exceptions:

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if G is a variable. Goal is the goal where the problem
occurred, ArgNo indicates the argument that caused the problem (in
this case, 2).

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if G is not a callable goal. Goal
is the goal where the problem occurred, ArgNo indicates the argument
that caused the problem (in this case, 2), ValidType is the expected
data type (callable), Culprit is the wrong term found.

• consult/1

consult(FileName) is true iff FileName is an accessible file containing
a Prolog knowledge base, and as a side effect it consult that knowledge
base, by adding it to current knowledge base.

The concept of accessible file has evolved over the tuProlog versions.
As already discussed in Section 4.5.6 for the include directive, in

87

tuProlog versions up to 2.6, trying to load another Prolog file in a direc-
tory other than the current one would fail, unless the absolute sub-file
name, or a relative path referred to the engine’s base folder is provided.
From tuProlog 2.7 on, an enhanced mechanism has been included that
enables tuProlog to look for Prolog files in all the subfolders of the
project base folder. So, for instance, the file someOtherFile located in
someOtherFolder (a folder other than the current one) can be loaded
from the current folder by simply issuing a consult(someOtherFile)

command. See also Section 7.2.4.

Template: consult(+string)

Exception: the predicate maps onto the above text from file(File,

Text) with File=FileName, so the same exceptions are raised.

Moreover, it also raises the following specific exceptions:

Exception: error(syntax error(Message), syntax error(Goal,

Line, Position, Message)) the theory in FileName is not valid.
Goal is the goal where the problem occurred, Message contains a de-
scription of the occurred error, Line and Position provide the line
and position of the error in the theory text.

5.3.1.3 Random Generation of Numbers

The random generation of number can be regarded as a form of I/O.

• rand float/1

rand float(RandomFloat) is true iff RandomFloat is a float random
number generated by the engine between 0 and 1.

Template: rand float(?float)

• rand int/2

rand int(Seed, RandomInteger) is true iff RandomInteger is an in-
teger random number generated by the engine between 0 and Seed.

Template: rand int(?integer, @integer)

5.4 ThreadLibrary

Introduced in tuProlog 2.7, ThreadLibrary provides primitives for explicit
multi-threading, namely:

• predicates to create and delete threads;

88

• predicates to search and retrieve solutions;

• predicates for inter-thread communication via message queues;

• predicates for thread synchronization via mutual exclusion.

Each thread is committed to solve a specific goal, and is identified by a
unique identifier. The lifecycle of a thread starts when the thread is created
by thread create/2, asked to compute the first solution of the specified
query. Once that solution is found, the thread suspends, waiting for future
requests for alternative solutions. Should such a request arrive, the thread
is resumed, and the subsequent solution is computed; and so on.

More detailed information about the internal organisation and thread
handling is reported in the box on page 90, while several examples of Thread-
Library use are discussed in Section 5.4.2 on page 97.

5.4.1 Predicates

5.4.1.1 Creating and deleting threads

The following predicates are provided to create and delete threads:

• thread create/2

thread create(-ThreadID,+Query) is true if a new thread can be
created to solve the given Query; the unique ID of the newly-thread
thread is unified with ThreadID.

Template: thread create(-term, +term)

• thread id/1

thread id(?ThreadID) is true if the unique ID of the current thread
can be unified with ThreadID.

Template: thread id(-variable)

Template: thread id(+number)

• thread join/2

thread join(+ThreadID, ?Result) waits for the thread ThreadID

to terminate, and unifies its result with Result. As a side effect, the
terminated thread is removed from the system. The call fails if the
thread ThreadID is in detached state (see thread detach/1 below).

Template: thread join(+number, ?term)

89

Thread model: some internals.
Internally, tuProlog threads can assume three roles during their execution:

• producer – solves a query, looking for a new solution;

• reader – retrieves a solution, when asked by the user;

• controller – restarts the producer, when asked by the user.

As highlighted above, the user interacts only with controllers and readers, to ask
for/retrieve a new solution, respectively, via the primitives thread next sol/1

(for controllers) and thread read/2 / thread join/2 (for readers): no direct
user/producer interaction ever occurs. Controllers and readers never interact
directly with each other: rather, they interact only with producers. If a reader
tries to retrieve a solution when the producer is running, the reader waits until
the producer terminates. On the other hand, a controller wishing to ask the
producer to compute another solution just deposits its request and proceeds,
without blocking. When a producer terminates, readers have priority over con-
trollers: this is necessary to guarantee that reader receive the correct solution,
not a subsequent one. So, upon the producer termination, the computed solu-
tion is delivered to the waiting reader: the controller’s request - if any - is then
considered, and the producer possibly restarts accordingly.
So, when the producer finds a solution, four situations can occur:

1. neither waiting readers, nor pending controller requests are present: in
this case, the producer either just terminates (if no further solutions
exist) or suspends (if alternative solutions exist), waiting to be awakened
when the controller eventually asks for one further solution;

2. readers are waiting for the computed solution, but there are no pending
requests from the controller: the producer awakens the waiting read-
ers, that concurrently retrieve the computed solution without interfering
with each other; then the producer behaves as above – that is, either ter-
minates if no further solutions exist, or suspends if alternative solutions
exist;

3. no readers are waiting, but there are new controller requests for further
computations: in this case, if alternative solutions do exist, the producer
restarts its execution, serving one of the controllers’ requests (unlike read-
ers, which can safely operate concurrently, controllers’ requests must be
served one at a time, to prevent interferences); otherwise, if no further
solutions exist, the producer just terminates ignoring the controller re-
quest;

4. there are both waiting readers and new controller requests: the producer
awakens the waiting readers, then behaves as in the previous case, de-
pending whether alternative solutions exist. As stated above, readers
have priority over controllers, in order to guarantee that they get the
correct solution, not a subsequent one.

90

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if ThreadID is not an integer.
Goal is the goal where the problem occurred, ValidType is the ex-
pected type (integer), Culprit is the wrong term actually found.

• thread read/2

thread read(+ThreadID, ?Result) waits for the thread ThreadID

to terminate, and unifies its result with Result. Unlike thread join,
the terminated thread is not removed from the system and remains
available for further reads. The call fails if the thread ThreadID is in
detached state (see thread detach/1 below).

Template: thread read(+number, ?term)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if ThreadID is not an integer.
Goal is the goal where the problem occurred, ValidType is the ex-
pected type (integer), Culprit is the wrong term actually found.

• thread detach/1

thread detach(+ThreadID) puts the specified thread in the detached
state. Threads in this state cannot be read, or waited for, by other
threads via thread read/2 or thread join/2, nor can they be queried
via thread next sol/1. When a detached thread terminates, it leaves
no traces of its previous computation.

Template: thread detach(+number)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if ThreadID is not an integer.
Goal is the goal where the problem occurred, ValidType is the ex-
pected type (integer), Culprit is the wrong term actually found.

• thread next sol/1

thread next sol(+ThreadID) forces the specified thread to resume
computing, exploring further solutions to the (initial) query.

Template: thread next sol(+number)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if ThreadID is not an integer.
Goal is the goal where the problem occurred, ValidType is the ex-
pected type (integer), Culprit is the wrong term actually found.

91

• thread has next/1

thread has next(+ThreadID) succeeds iff the specified thread can
provide further solutions to the (initial) query.

Template: thread has next(+number)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if ThreadID is not an integer.
Goal is the goal where the problem occurred, ValidType is the ex-
pected type (integer), Culprit is the wrong term actually found.

• thread execute/2

thread execute(+ThreadID, +Query) is the backtrackable version of
thread create/2. It must be followed by some read operation to re-
trieve the subsequent solutions computed by the thread. Care must
be taken in using thread join/2 to retrieve alternative solutions (af-
ter the first one): on backtracking, thread execute would fail, since
thread join removes the thread from the system.

Template: thread execute(+number, +term)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if ThreadID is not an integer.
Goal is the goal where the problem occurred, ValidType is the ex-
pected type (integer), Culprit is the wrong term actually found.

• thread sleep/1

thread sleep(+ThreadID) suspends the current thread for the given
time (expressed in milliseconds)

Template: thread sleep(+number)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if ThreadID is not an integer.
Goal is the goal where the problem occurred, ValidType is the ex-
pected type (integer), Culprit is the wrong term actually found.

5.4.1.2 Inter-thread communication via queues

ThreadLibrary provides message queues as a means to support inter-thread
communication. Two kinds of queues are available:

• public queues, created explicitly by the user and referenced via a
unique, user-defined identifier;

92

• private queues, implicitly associated to each thread and immediately
accessible via the thread ID.

The same set of primitives is used for both kinds of queues, but the queue
ID is different — an atom for the public queues, an integer number (the
thread ID) for the private queues.

Messages are sent asynchronously, that is, the sending thread contin-
ues its execution without waiting for any response or acknowledge; message
reception, instead, can be either synchronous or asynchronous. The syn-
chronous receive blocks the thread until a message arrives, while the asyn-
chronous version is not blocking—if no message is present, the primitive just
fails. Finally, messages read from a queue can both be removed from the
queue, or left there for subsequent threads to read them.

• thread send msg/2

thread send msg(+QueueOrThreadID, +Msg) inserts a message in the
queue identified by QueueOrThreadID. As a side effect, any thread
suspended on that queue is awakened.

Template: thread send msg(+term, +term)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if QueueOrThreadID is neither
an integer nor an atom. Goal is the goal where the problem occurred,
ValidType is the expected type (integer or atom), Culprit is the
wrong term actually found.

• thread get msg/2, thread wait msg/2

thread get msg(+QueueOrThreadID, ?Msg) and
thread wait msg(+QueueOrThreadID, ?Msg) look into the queue iden-
tified by QueueOrThreadID, for a message unifying with Msg. If none
exists, the primitives block until a message arrives. Their only dif-
ference is that thread get msg removes the message from the queue
while reading it, while thread wait msg leaves it there.

Template: thread get msg(+term, ?term)

Template: thread wait msg(+term, ?term)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if QueueOrThreadID is neither
an integer nor an atom. Goal is the goal where the problem occurred,
ValidType is the expected type (integer or atom), Culprit is the
wrong term actually found.

93

• thread remove msg/2, thread peek msg/2

thread remove msg(+QueueOrThreadID, ?Msg) and
thread peek msg(+QueueOrThreadID, ?Msg) look into the queue iden-
tified by QueueOrThreadID, for a message unifying with Msg. If none
exists, both primitives fail. Upon success, thread remove msg removes
the message from the queue, while thread peek msg leaves it there.

Template: thread remove msg(+term, ?term)

Template: thread peek msg(+term, ?term)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if QueueOrThreadID is neither
an integer nor an atom. Goal is the goal where the problem occurred,
ValidType is the expected type (integer or atom), Culprit is the
wrong term actually found.

• msg queue create/1

msg queue create(+Queue) creates a new public queue named Queue;
this queue is not associated to any specific thread.

Template: msg queue create(+atom)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if Queue is not an atom. Goal
is the goal where the problem occurred, ValidType is the expected
type (atom), Culprit is the wrong term actually found.

• msg queue destroy/1

msg queue destroy(+Queue) deletes the public queue named Queue.
Please note that private queues, implicitly associated to each thread,
cannot be destroyed.

Template: msg queue destroy(+atom)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if Queue is not an atom. Goal
is the goal where the problem occurred, ValidType is the expected
type (atom), Culprit is the wrong term actually found.

• msg queue size/2

msg queue size(+QueueOrThreadID, ?Size) unifies the number of
elements in the queue QueueOrThreadID with Size.

Template: msg queue size(+term, ?atom)

94

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if QueueOrThreadID is neither
an integer number nor an atom. Goal is the goal where the problem
occurred, ValidType is the expected type (integer or atom), Culprit
is the wrong term actually found.

5.4.1.3 Thread synchronization via mutual exclusion

ThreadLibrary also provides the notion of mutex as a simple thread syn-
chronization mechanism. A mutex is a conceptual device that be occupied
by at most one thread at a time. tuProlog mutexes are re-entrant, that is,
the same thread can block a given mutex more than one time, requiring
as many unlock operations to free it as the block operations were. In this
way, nested critical regions can be handled, preventing a thread to cause a
dead-lock to itself. However, no consistency checks are provided to guaran-
tee deadlock avoidance: so, the correct use of mutex semaphores is on the
user’s responsibility.

• mutex create/1

mutex create(+MutexID) creates a new mutex identified by MutexID.
If a mutex identified by the MutexID already exists, the current mutex
is reused.

Template: mutex create(+atom)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if MutexID is not an atom.
Goal is the goal where the problem occurred, ValidType is the ex-
pected type (integer or atom), Culprit is the wrong term actually
found.

• mutex destroy/1

mutex destroy(+MutexID) destroys the mutex identified by MutexID.

Template: mutex destroy(+atom)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if MutexID is not an atom.
Goal is the goal where the problem occurred, ValidType is the ex-
pected type (integer or atom), Culprit is the wrong term actually
found.

• mutex lock/1

mutex lock(+MutexID) locks the mutex identified by MutexID, or sus-

95

pends if it is already locked. If such a mutex does not exist yet, it is
created automatically.

Template: mutex lock(+atom)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if MutexID is not an atom.
Goal is the goal where the problem occurred, ValidType is the ex-
pected type (integer or atom), Culprit is the wrong term actually
found.

• mutex trylock/1

mutex trylock(+MutexID) tries to lock the mutex identified by MutexID,
or fails if it is already locked by another thread.

Template: mutex trylock(+atom)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if MutexID is not an atom.
Goal is the goal where the problem occurred, ValidType is the ex-
pected type (integer or atom), Culprit is the wrong term actually
found.

• mutex isLocked/1

mutex isLocked(+MutexID) succeeds if the mutex identified by MutexID

is currently lockedby some thread.

Template: mutex isLocked(+atom)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if MutexID is not an atom.
Goal is the goal where the problem occurred, ValidType is the ex-
pected type (integer or atom), Culprit is the wrong term actually
found.

• mutex unlock/1

mutex unlock(+MutexID) unlocks the mutex identified by MutexID.

Template: mutex unlock(+atom)

Exception: error(type error(ValidType, Culprit), type error(

Goal, ArgNo, ValidType, Culprit)) if MutexID is not an atom.
Goal is the goal where the problem occurred, ValidType is the ex-
pected type (integer or atom), Culprit is the wrong term actually
found.

96

• mutex unlock all/0

mutex unlock all unlocks all the mutexes that are currently blocked
by the current thread.

Template: mutex unlock all

5.4.2 Examples

The following examples illustrate the use of most ThreadLibrary features.

5.4.2.1 Factorial of two numbers

As a first, simple example, let us start by computing the factorial of two
numbers–say, 7 and 8. This is not a good problem to be solved concurrently,
but it is small enough to easily show the tuProlog multi-threading approach
at work. The sequential code could be written classically as follows:

fact(0,1):- !.

fact(N,X):- M is N-1, fact(M,Y), X is Y*N.

with queries like

?- fact(7,X). ?- fact(8,Y).

yes yes

X / 5040 Y / 40320

To compute the two factorials concurrently, we can create two threads, one
for each query, and then retrieve their answers, as follows:

start(N,X,M,Y):- thread_create(ID1, fact(N,X)),

thread_create(ID2, fact(M,Y)),

thread_join(ID1, fact(N,X)),

thread_join(ID2, fact(M,Y)).

whose query would be like

?- start(7,X,8,Y).

yes.

X / 5040 Y / 40320

Since the two factorial goals are rather short here, the overhead of handling
concurrency is (unexpectedly) greater than the advantage brought by con-
currency, as confirmed by some simple performance measuring (+14% exe-
cution time). However, the example shows how to create a pair of threads
(via thread create), each identified by a unique identifier and devoted to
solve a given goal, and how such identifier is reused to get the solution
(thread join primitive).

97

5.4.2.2 Father and child communicating via a public queue

As a second example, let us consider the case of two threads that com-
municate via the public queue MyQueue. First, the father creates the child
(thread create primitive), which immediately suspends waiting for a mes-
sage (thread get msg primitive). The father, after sleeping for 500 ms (via
thread sleep), sends its message (thread send msg primitive), thus awak-
ening the child, and waits for the child to terminate (thread join primitive).

start(X):- msg_queue_create(’MyQueue’),

thread_create(ID, child(X)),

thread_sleep(500),

thread_send_msg(’MyQueue’, m(’important message’)),

thread_join(ID, child(X)).

child(X):- thread_get_msg(’MyQueue’, m(X)).

The query start(X) succeeds unifying X with ’important message’.

5.4.2.3 Father and children communicating via a private queue

The third example is similar, but the father creates three children, with
three different tasks (the diagram of their execution flows is reported in
Figure 5.1 on page 99): the first waits for a message to arrive in its private
queue (logging actions on a file), the second sends the message, the third
just monitors his brother’s queue, without actually getting anything; they
all communicate via the private queue implicitly associated to the first child.

start(X):- thread_create(ID1, thread1(ID1)),

thread_sleep(200),

thread_create(ID2, thread2(ID1)),

thread_create(ID3, thread3(ID1,X)),

thread_read(ID3, _),

write(’Father: done’).

thread1(ID):- tell(’threadLog.txt’),

write(’ID1: waiting for message’),

thread_get_msg(ID, m(X)),

write(’ID1: message retrieved’).

thread2(ID):- thread_send_msg(ID, m(’critical message’)),

98

Figure 5.1: Execution flows in the third example.

99

write(’ID2: message sent’).

thread3(ID,X):- thread_peek_msg(ID, m(X)),

write(’ID3: trying to get message’).

More in detail, the father creates three threads identified by ID1, ID2,
and ID3, which execute the goals thread1/1, thread2/1, and thread3/2,
respectively: ID1 is the message receiver/logger, ID2 is the message sender,
ID3 is the task charged to monitor its brother’s queue. To prevent races,
the father waits for 200 ms after creating the first (message receiver) thread
ID1, so that it is surely up and running when the message sender ID2 and its
brother ID3 actually start. Then, the father suspends its execution, waiting
for ID3 to terminate.

However, since ID1 removes the message from its queue when read-
ing (via thread get msg/2), ID3 never finds anything when checking its
brother’s queue (via the non-blocking thread peek msg/2 primitive): thus,
its goal thread3/2 always fails, causing the father’s thread read to fail,
too. As a result, the father’s final write is never performed, either:

?- start(X).

no

and the log file finally contains just

ID1: waiting for message

ID2: message sent

ID1: message retrieved

5.4.2.4 Synchronizing thread interactions

In this producer/consumer example, the consumer’s goal is to retrieve only
the last solution of the query has child(bob,X), while the producer com-
putes all the solutions to this query; the father coordinates the two tasks,
by first creating the producer and the consumer, and then triggering the
producer to generate all the possible solutions in sequence.

Without an explicit synchronisation mechanism, races would occur, caus-
ing the reader to read not the last solution, but just “one of” the possible
solutions, depending which thread is faster.

By suitably sequentialising the access to the producer’s queue, the mutex
semaphore guarantees that all solutions are produced before the consumer

100

Figure 5.2: Execution flows in the mutex example.

start:- thread_create(ID1, has_child(bob,X)),

mutex_lock(’mutex’),

thread_create(ID2, read_child(ID1,X)),

loop(1,5,1, ID1),

mutex_unlock(’mutex’).

read_child(ID, X) :- mutex_lock(’mutex’),

thread_read(ID, X),

mutex_unlock(’mutex’).

has_child(bob, alex).

has_child(bob, anna).

has_child(bob, mary).

loop(I, To, Inc, ThreadId) :- Inc >= 0, I > To, !.

loop(I, To, Inc, ThreadId) :- Inc < 0, I < To, !.

loop(I, To, Inc, ThreadId) :- thread_has_next(ThreadId),

!,

thread_next_sol(ThreadId),

Next is I+Inc,

loop(Next, To, Inc, ThreadId).

loop(I, To, Inc, ThreadId).

101

can start reading, so that the last solution is actually read. (The execution
flow diagram and the complete code are reported in Figure 5.2 on page 101.)

The first child, ID1, is the solution finder & producer: its task is to
generate the solutions of the given goal has child(bob,X). When started, it
looks for the first solution: once found, it suspends waiting for possible future
requests for alternative solutions. These will be actually asked shortly, since
the father triggers ID1 to find all the alternative solutions (via the loop/4

predicate, which embeds a call to thread next sol) just after generating
its second child, the solution reader thread ID2. In fact, ID2’s task is to
retrieve the computed solution from ID1’s private queue: but due to the
thread read semantics, it actually reads ID1’s result only when ID1 has
terminated. This is why explicit synchronisation is needed: otherwise, the
reader would read “one of” the solutions, non-deterministically, depending
on which thread is faster (this can be easily checked by commenting out the
mutex lock/mutex unlock statements).

With the explicit mutex semaphore, interactions are sequentialised: as
long as the father holds the lock, the reader cannot retrieve any solution.
Since the lock is released only after all the solutions have been explored, the
reader will actually get only the last computed solution, X / mary.

5.4.2.5 Flattening and manipulating lists

Table 5.4 on page 103 shows a sequential Prolog program that manipulates
a list of (sub)lists. More precisely, it first flattens the list of lists into a single
flat list, then sorts the obtained list and counts the occurrence of a given
term in that list.

To exploit concurrency, the program needs to be restructured, distribut-
ing the responsibilities among different threads. As an example, we decided
to delegate the list flattening and sorting to a child thread, maintaining the
final occurrence counting on the main (father)’s thread: the result is shown
in Table 5.5 on page 104, where the sequential and the concurrent versions
are compared. The concurrent version showed a 16% performance gain.

5.5 DCGLibrary

Library Dependencies: BasicLibrary.
This library provides support for Definite Clause Grammars (DCGs) [7],

an extension of context free grammars that have proven useful for describing
natural and formal languages, and that may be conveniently expressed and
executed in Prolog. Note that this library is not loaded by default when a

102

start(L, 0, T) :- !.

start([H|Tail], N, T) :-

plain(H,L_plain),

bubble(L_plain,L_ord),

occurr_count(T,H,Count),

C is N-1, start(Tail,C, T).

plain(L1,L2) :- plain(L1,[],L2).

plain([],ACC,ACC).

plain([H|REST],ACC,L2) :-

H = [_|_],

plain(H,ACC,ACC1),

plain(REST,ACC1,L2).

plain([H|REST],ACC,L2) :-

append(ACC,[H],ACC1),

plain(REST,ACC1,L2).

plain(X,ACC,L2) :-

append(ACC,[X],L2).

bubble(L1,L2) :- bubble(L1,0,L2).

bubble(L1,0,L2) :-

sweep(L1,0,L2).

bubble(L1,0,L2) :-

sweep(L1,1,LTMP),

bubble(LTMP,0,L2).

sweep([X|[]],0,[X|[]]).

sweep([X,Y|REST1],CHANGED,[X|REST2]) :-

X =< Y, sweep([Y|REST1],CHANGED,REST2).

sweep([X,Y|REST1],1,[Y|REST2]) :-

X > Y, sweep([X|REST1],_,REST2).

occurr_count(T,L,N) :- occurr_count(T,L,0,N).

occurr_count(_,[],ACC,ACC).

occurr_count(T,[T|REST],ACC,N) :-

ACC1 is ACC+1, occurr_count(T,REST,ACC1,N).

occurr_count(T,[_|REST],ACC,N) :- occurr_count(T,REST,ACC,N).

Table 5.4: The sequential version of the list manipulation program.
Query: ?- start([[[2,2],2,2,1],[4,[3],2],[9,8,9,2]], 3, 2).

103

Sequential version:

start(L, 0, T) :- !.

start([H|Tail], N, T) :-

plain(H,L_plain),

bubble(L_plain,L_ord),

occurr_count(T,H,Count),

C is N-1, start(Tail,C, T).

...

Concurrent version:

start(L, N, T) :-

thread_create(ID, firstResp(L, N)),

secondResp(L, N, T).

secondResp(L, 0, T):- !.

secondResp([H|Tail], N, T) :-

occurr_count(T,H,Count),

C is N-1, secondResp(Tail,C, T).

firstResp(L, 0) :- !.

firstResp([H|Tail], N) :-

plain(H,L_plain),

bubble(L_plain,L_ord),

C is N-1, firstResp(Tail,C).

...

Table 5.5: The sequential version (top) and the concurrent (bottom) version
of the list manipulation program.
Query: ?- start([[[2,2],2,2,1],[4,[3],2],[9,8,9,2]], 3, 2).

104

tuProlog engine is created: it must be explicitly loaded by the user, or via
a load library directive inside any theory using DCGs.

A DCG rule has the general form Head --> Body: to distinguish ter-
minal from nonterminal symbols, a phrase (that is, a sequence of terminal
symbols) must be written as a Prolog list, with the empty sequence writ-
ten as the empty list []. The body can contain also executable blocks in
parentheses, which are interpreted as normal Prolog rules.

Here is a simple example (see also Figure 5.3 on page 106):

sentence --> noun_phrase, verb_phrase.

verb_phrase --> verb, noun_phrase.

noun_phrase --> [charles].

noun_phrase --> [linda].

verb --> [loves].

To verify whether a phrase is correct according to the given grammar, the
phrase/2 or phrase/3 predicates are used—the latter form providing an
extra argument for the ‘remainder’ of the input string not recognised as be-
ing part of the phrase. Some examples follow:

?- phrase(sentence, [charles, loves, linda])

yes

?- phrase(sentence, [Who, loves, linda])

Who/charles

Who/linda

?- phrase(sentence, [charles, loves, linda, but, hates, laura], R)

R/[but, hates, laura]

5.5.1 Predicates

The classic built-in predicates provided for parsing DCG sentences are:

• phrase/2

phrase(Category, List) is true iff the list List can be parsed as
a phrase (i.e. sequence of terminals) of type Category. Category

can be any term which would be accepted as a nonterminal of the
grammar (or in general, it can be any grammar rule body), and must
be instantiated to a non-variable term at the time of the call. This

105

Figure 5.3: The DCG Library example in the tuProlog GUI (note the explicit
library loading directive).

predicate is the usual way to commence execution of grammar rules.
If List is bound to a list of terminals by the time of the call, the goal
corresponds to parsing List as a phrase of type Category; otherwise
if List is unbound, then the grammar is being used for generation.

Template: phrase(+term, ?list)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if Category is a variable. Goal is the goal where
the problem occurred, ArgNo indicates the argument that caused the
problem (obviously, 1).

• phrase/3

phrase(Category, List, Rest) is true iff the segment between the
start of list List and the start of list Rest can be parsed as a phrase
(i.e. sequence of terminals) of type Category. In other words, if the
search for phrase Phrase is started at the beginning of list List, then
Rest is what remains unparsed after Category has been found. Again,
Category can be any term which would be accepted as a nonterminal
of the grammar (or in general, any grammar rule body), and must be
instantiated to a non variable term at the time of the call.

Template: phrase(+term, ?list, ?rest)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if Category is a variable. Goal is the goal where
the problem occurred, ArgNo indicates the argument that caused the

106

problem (obviously, 1).

5.5.2 Operators

The full list of DCGLibrary operators, with their priority and associativity,
is reported in Table 5.6.

Operator Associativity Priority

--> xfx 1200

Table 5.6: DCGLibrary operators.

5.6 ISOIOLibrary

The ISO specification requires a lot of I/O predicates—many more than
tuProlog IOLibrary supports. Table 5.4 summarises the differences between
tuProlog IOLibrary and the ISO specifications. The main reason for such
a large number of differences is that the ISO Prolog standard defines very
general concepts for I/O handling, aimed at supporting a wide variety of
I/O modes and devices. More precisely:

• Sources represent the resources from which data are read;

• Sinks represent the resources to which data are written.

Sources and sinks can be file, standard input/output stream, or any other
resource supported by the underlying system: the only assumption is that
each resource is associated to a sequence of bytes or characters.

Stream terms provide a logical view of sources and sinks, and are used
to identify a stream in I/O predicates. A stream term is a term respecting
the following constraints:

• it is a ground term;

• it is not an atom (this requirement means to distinguish stream terms
from stream aliases–see below for details);

• it is not used to identify other streams at the same time.

107

Figure 5.4: Comparison between the I/O predicates provided by IOLibrary
and the ISO standard specification. Bold style indicates missing predicates,
plain style indicates existing functionalities to be refactored, improved, or
be provided with a different signature to be ISO-compliant.

108

The ISO standard does not specify whether the stream terms must result
from an explicit source/sink opening by the open/4 predicate, nor whether
different sources/sinks must be represented by different stream terms at
subsequent times: these issues are left to the specific implementation.

Moreover, each stream can be associated to a stream alias—an atom
used to refer to the stream. The association between a stream and its alias
is created when the stream is opened, and automatically canceled when
the stream is closed. The same stream can be associated to multiple aliases
simultaneously. Two pre-defined streams exist that are always automatically
open: the standard input (alias user input) and the standard output (alias
user output). Such streams must never be closed.

NB: from tuProlog 2.8, the graphic atom is also allowed to set the input
from the user GUI. Please note that such a choice somehow hardwires your
code to work under the tuProlog GUIConsole or Android app only.

The ISO standard also introduces the concepts of current input stream
and current output stream: initially, they default to the standard input
and standard output above, but can be reassigned at any time via the
set input/1 e and set output/1 predicates. However, when such an in-
put/output stream is closed, the current input/output stream must be re-set
to its default value (i.e., the standard input/output, respectively).

One further concept is the stream position, which defines the point where
the next input/output will take place; syntactically, it is an implementation-
dependent ground term. The stream position is always supported, even by
predicates whose operations do not change the position itself; to change
the current position, the set stream position/2 predicate is used. When
an output stream is repositioned, any output possibly present in the sink
is overwritten; when an input stream is repositioned, instead, the content
already available into the stream remains unaltered.

A stream that can be repositioned (that is, whose reposition property
is true) must support also the end position concept: the position of an input
stream that has been completely read is represented by the end-of-stream

atom, while any attempt to read beyond the end of stream causes the stream
position to become past-end-of-stream.

On the other hand, output streams can be flushed when necessary via the
flush output/1 predicate; a stream is automatically flushed before closing.

5.6.1 Predicates

ISOIOLibrary defines the following predicates:

109

• current input/1

current input unifies the current input stream with the given argu-
ment.

Template: current input(@Stream or alias)

• current output/1

current output unifies the current output stream with the given ar-
gument.

Template: current output(@Stream or alias)

• set input/1

set input associates the current input to the provided argument,
which can be either a stream term or an alias.

Template: set input(@Stream or alias)

Exception: error(instantiation error, instantiation error) if
Stream or alias is a variable.

Exception: error(domain error, domain error(stream or alias,

Stream or alias)) if Stream or alias is neither a stream term nor
a valid stream alias.

Exception: error(existence error, existence error(stream,

Stream or alias)) if Stream or alias is not associated to an open
stream.

Exception: error(permission error, permission error(input,

stream, Stream or alias)) if Stream or alias is associated to an
output stream.

• set output/1

set output associates the current output to the provided argument,
which can be either a stream term or an alias.

Template: set output(@Stream or alias)

Exception: error(instantiation error, instantiation error) if
Stream or alias is a variable.

Exception: error(domain error, domain error(stream or alias,

Stream or alias)) if Stream or alias is neither a stream term nor
a valid stream alias.

Exception: error(existence error, existence error(stream,

Stream or alias)) if Stream or alias is not associated to an open
stream.

110

Exception: error(permission error, permission error(output,

stream, Stream or alias)) if Stream or alias is associated to an
input stream.

• flush output/0 - flush output/1

flush output flushes the output onto the stream associated to the
provided argument, which can be either a stream term or an alias; if
no argument is provided, the default output stream is flushed.

Template: flush output(@Stream or alias)

Template: flush output

Exception: error(instantiation error, instantiation error) if
Stream or alias is a variable.

Exception: error(domain error, domain error(stream or alias,

Stream or alias)) if Stream or alias is not a valid stream term or
alias.

Exception: error(existence error, existence error(stream,

Stream or alias)) if Stream or alias is not associated to an open
stream.

Exception: error(permission error, permission error(output,

stream, Stream or alias)) if Stream or alias is associated to an
input stream.

• stream property/2

stream property verifies whether the given stream has the given prop-
erty, unifying Property with the corresponding value.

Template: stream property(?Stream, ?Property)

Exception: error(instantiation error, instantiation error) if
Stream is a variable.

Exception: error(domain error, domain error(stream,

Stream)) if Stream is not a stream term.

Exception: error(domain error, domain error(stream property,

Property)) if Property is neither a variable nor a stream property.

Exception: error(existence error, existence error(stream,

Stream)) if Stream is not associated to an open stream.

• at end of stream/0 - at end of stream/1

at end of stream succeeds if the end of stream property has either

111

the end of stream or the past end of stream value. The zero-argument
version checks the current input stream.

Template: at end of stream(@Stream or alias)

Template: at end of stream

Exception: error(instantiation error, instantiation error) if
Stream or alias is a variable.

Exception: error(domain error, domain error(stream,

Stream or alias)) if Stream or alias is not a valid stream term or
alias.

Exception: error(existence error, existence error(stream,

Stream or alias)) if Stream or alias is not associated to an open
stream.

• set stream position/2

set stream position is true if the stream position can be successfully
set to the new Position argument.

Template: set stream position(@Stream or alias, @Position)

Exception: error(instantiation error, instantiation error) if
either Stream or alias or Position is a variable.

Exception: error(domain error, domain error(stream,

Stream or alias)) if Stream or alias is not a valid stream term or
alias.

Exception: error(existence error, existence error(stream,

Stream or alias)) if Position is neither a valid stream position,
nor a variable.

Exception: error(permission error, permission error(reposition,

stream, Stream or alias)) if the reposition property of this stream
is false.

• open/3 - open/4
open succeeds if the stream can be opened according to the mode and
options desired.

Template: open(@Source Sink, @Mode, -Stream)

Template: open(@Source Sink, @Mode, -Stream, @Options)

Exception: error(instantiation error, instantiation error) if
either Source sink or Mode is a variable, or if Options is a partial
list or such a list contains a variable.

112

Exception: error(type error, type error(atom, Mode)) if Mode

is a neither an atom nor a variable.

Exception: error(type error, type error(list, Options)) if
Options is neither a list nor a partial list.

Exception: error(type error, type error(variable, Stream)) if
Stream is not a variable.

Exception: error(domain error, domain error(stream sink,

Source sink)) if Source sink is not a valid stream source or sink.

Exception: error(domain error, domain error(io mode,

Mode)) if Mode is an atom other than the prescribed input or output.

Exception: error(domain error, domain error(stream option,

Element)) if an Element of the options list is neither a variable nor
a valid stream option.

Exception: error(existence error, existence error(stream,

Source sink)) if the source /sink stream Source sink does not exist.

Exception: error(permission error, permission error(open,

source sink, Source sink)) if the specified source/sink stream can-
not be opened.

Exception: error(permission error, permission error(open,

source sink, alias(A))) if alias(A) is in the options list, and A

is already bound to another open stream.

Exception: error(permission error, permission error(open,

source sink, reposition(true))) if reposition(true) is in the
options list, but the stream cannot be repositioned.

• close/1 - close/2
close closes the given stream, eliminating any associated alias(es). If
the force(true) option is specified, the stream is immediately closed,
ignoring any data not yet transferred (in the case of output streams);
in any other case, the stream is flushed before closing. If the stream
to be closed is the current stream, the latter will be associated to the
standard input or output, as appropriate.

Template: close(@Stream or alias)

Template: close(@Stream or alias, @Options)

Exception: error(instantiation error, instantiation error) if
either Stream or alias is a variable, or Options is a partial list or
such a list contains a variable.

113

Exception: error(type error, type error(list, Options)) if
Options is neither a list nor a partial list.

Exception: error(domain error, domain error(stream or alias,

Stream or alias)) if Stream or alias is not a valid stream term or
alias.

Exception: error(domain error, domain error(close option,

Element)) if an Element of the options list is neither a variable nor
a valid close option.

Exception: error(existence error, existence error(stream,

Stream or alias)) if the stream Stream or alias is not associated
to an open stream.

Exception: error(permission error, permission error(open,

source sink, Source sink)) if the specified source/sink stream can-
not be opened.

Exception: error(permission error, permission error(open,

source sink, alias(A))) if alias(A) is in the options list, and A

is already bound to another open stream.

Exception: error(permission error, permission error(open,

source sink, reposition(true))) if reposition(true) is in the
options list, but the stream cannot be repositioned.

• get char/2 - get char/1 - get code/2 - get code/1

get char and get code read the next char from the given stream, and
unify it with the second argument—a character or an integer repre-
senting the character code, respectively; the single-argument version
of these predicates read from the current input stream. Special cases
are treated as follows:

– if the stream position is past end of stream, the action to be
performed depends on the stream options specified when the
stream was opened—namely, eof action(Action)(see above);

– if the stream position is end of stream, the EOF character is
returned, and the stream position becomes past end of stream.

Template: get char(@Stream or alias, ?Character)

Template: get char(?Character)

Template: get code(@Stream or alias, ?Character code)

Template: get code(?Character code)

114

Exception: error(instantiation error, instantiation error) if
either Stream or alias is a variable.

Exception: error(type error, type error(in character, Character))

if Character is neither a variable nor a character.

Exception: error(type error, type error(integer, Character code))

if Character code is neither a variable nor an integer.

Exception: error(domain error, domain error(stream or alias,

Stream or alias)) if Stream or alias is not a valid stream term or
alias.

Exception: error(existence error, existence error(stream,

Stream or alias)) if the stream Stream or alias is not associated
to an open stream.

Exception: error(permission error, permission error(input,

stream, Stream or alias)) if the stream in not an input stream.

Exception: error(permission error, permission error(input,

binary stream, Stream or alias)) if the stream in not a text stream.

Exception: error(permission error, permission error(input,

past end of stream, Stream or alias)) if the stream status is
end of stream(past) and the option eof action(true) is active.

Exception: error(representation error, representation error(

Character)) if the entity read from the stream is not a character.

Exception: error(representation error, representation error(

Character code)) if the entity read from the input stream is an in-
teger, but does not represent a character.

• peek char/2 - peek char/1 - peek code/2 - peek code/1

peek char and peek code work identically to the get char and get code

above, but leave the stream position unaltered after reading, so that
a subsequent read operation returns the same character.

Template: peek char(@Stream or alias, ?Character)

Template: peek char(?Character)

Template: peek code(@Stream or alias, ?Character code)

Template: peek code(?Character code)

Exception: : the same as above.

• put char/2 - put char/1 - put code/2 - put code/1

put char and put code are the writing counterparts of the get char

115

and get code above; syntax and exceptions raised are basically iden-
tical, but the Character or Character code must be ground in this
case—otherwise, an instantiation error occurs.

Template: put char(@Stream or alias, +Character)

Template: put char(+Character)

Template: put code(@Stream or alias, +Character code)

Template: put code(+Character code)

Exception: : the same as above, plus an error(instantiation error,

instantiation error) if Character or Character code is a variable.

• nl/0 - nl/1
nl inserts a newline in the given stream.

Template: nl(@Stream or alias)

Template: nl

Exception: error(instantiation error, instantiation error) if
either Stream or alias is a variable.

• read term/2 - read term/3 - read/1 - read/2
read term succeeds if a term can be read from the given stream that
can be unified with the Term argument: Options are considered only if
the above unification succeeds. The read predicate works analogously,
but no options can be specified. As usual, the no-stream versions
(read term/2 and read/1) operate on the current input stream.

Template: read term(@Stream or alias, ?Term, +Options)

Template: read term(?Term, +Options)

Template: read(@Stream or alias, ?Term)

Template: read(?Term)

Exception: error(instantiation error, instantiation error) if
either Stream or alias is a variable.

Exception: error(instantiation error, instantiation error) if
Options is either a partial list, or an element in the list is a variable.

Exception: error(type error, type error(list, Options)) if
Options is neither a list nor a partial list.

Exception: error(domain error, domain error(stream or alias,

Stream or alias)) if Stream or alias is not a valid stream term or
alias.

116

Exception: error(existence error, existence error(stream,

Stream or alias)) if the stream Stream or alias is not associated
to an open stream.

Exception: error(domain error, domain error(read option,

Element)) if an element in the option list is neither a variable nor a
valid read option.

Exception: error(existence error, existence error(stream,

Stream or alias)) if Stream or alias is not associated to an open
stream.

Exception: error(permission error, permission error(input,

stream, Stream or alias)) if the stream in not an input stream.

Exception: error(permission error, permission error(input,

binary stream, Stream or alias)) if the stream in not a text stream.

Exception: error(permission error, permission error(input,

past end of stream, Stream or alias)) if the stream status is
end of stream(past) and the option eof action(true) is active.

Exception: error(representation error, representation error(

Flag)) if the entity read from the stream does not comply with
the rules expressed by Flag , which can be max arity, max integer,
min integer.

Exception: error(representation error, representation error(

imp dep atom)) if one or more characters in the input stream cannot
form a valid token, or the character sequence cannot be transformed
into a valid atom according to the current operator notation.

• write term/2 - write term/3 - write/1 - write/2 - writeq/1 -
writeq/2 - write canonical/1 - write canonical/2

These predicates are the writing counterparts of the read term and
read predicates above: the given term is written on the given stream
according to the specified write options, or following the default val-
ues3 in the write, writeq and write canonical cases. Basically, the
same considerations and exceptions above still apply.

Template: write term(@Stream or alias, @Term, +Options)

Template: write term(@Term, +Options)

3Namely: quoted(false), ignore ops(false), numbervars(true) for write,
quoted(true), ignore ops(false), numbervars(true) for writeq, quoted(true),
ignore ops(true), numbervars(true) for write canonical.

117

Template: write(@Stream or alias, @Term)

Template: write(@Term) Template: writeq(@Stream or alias, @Term)

Template: writeq(@Term)

Exception: : the same as above

When a term is written via write term/3, the following rules apply:

– if the term is a variable, a character is produced of the form
string where the string following the underscore are implementation-

dependent. A variable occurring multiple times in the term is
obviously converted into the same string for each occurrence.

– if the term is an integer number, the corresponding string is pro-
duced; negative values starts with -.

– if the term is a real number, the corresponding string is produced;
negative values starts with -. If the write option quoted is true,
the produced string ensures that a subsequent read term can
read it back correctly.

– if the term is an atom that could not be read back unless quoted,
and the write option quoted is true, the produced string is quoted;
otherwise it is not.

– if the term contains a main functor that is not an operator, or
the write option ignore ops is true, the term is written in the
canonical form (Table 5.7); otherwise it is not.

– if, instead, the term contains a main that is an operator and
the write option ignore ops is true, the term is written in the
operator notation ((Table 5.7).

• get byte/2 - get byte/1 - peek byte/2 - peek byte/1 - put byte/2

- put byte/1

get byte, peek byte and put byte are the binary counterparts of
the get char, peek char and put char above; syntax and exceptions
raised are basically identical, with obvious changes (i.e., the wrong
type of stream here is text instead of binary).

Template: get byte(@Stream or alias, ?Byte)

Template: get byte(?Byte)

Template: peek byte(@Stream or alias, ?Byte)

Template: peek byte(?Byte)

Template: put byte(@Stream or alias, +Byte)

Template: put byte(+Byte)

118

Canonical form Operator notation

For every term other than lists: - The operator itself is returned either be-
fore (for prefix operators), or between (for
infix operators) or after (for postfix opera-
tors) its arguments;

- the main functor’s atom; - a space is always inserted between the
operator and its arguments;

- the open parenthesis ’(’; - for each argument, the same rules above
are applied recursively;

- each term argument, built applying
the same rules recursively, in a comma-
separated list;

- if one of the argument is also an operator,
it is enclosed between parentheses.

- the closed parenthesis ’)’;
Example: 2+3 becomes +(2,3)

For lists (e.g. terms of the form .(Head,

Tail)), the list notation is used if the write
option ignore ops is false:
- an open square bracket ’[’;
- the head argument, built applying the
same rules recursively;
- the tail argument, built as follows;

- if the tail has the form .(Head, Tail)),
a comma is produced and the above rule is
triggered recursively;

- otherwise, if the tail is empty (e.g. []),
a close bracket is produced ’]’

- otherwise, a pipe symbol is produced
’|’ and these rules are re-applied recur-
sively; at the end, a close bracket is pro-
duced ’]’

Table 5.7: Term writing rules: canonical form and operator notation.

119

Exception: : see description above.

5.6.2 Options

The ISO standard defines options for stream creation, stream closure, and
stream properties.
When a stream is opened via open/4:

• type(Type) specifies the stream type—either a binary stream or a
text stream (default);

• reposition(Bool) specifies whether the stream can be repositioned
or not (see above);

• alias(Alias) defines Alias as a stream alias for this stream;

• eof action(Action) specifies the value to be returned by a read pred-
icate encountering the end-of-stream; possible values are error, to
indicate that no further read is possible, or eof code (default), to in-
dicate that the special eof value must be returned, or reset, meaning
that the read position must be reset to the start of the stream. This
is particulary useful on the console input.

Conversely, when a stream is closed via close/1-/2:

• force(Bool) specifies whether the stream must be forcedly closed
upon error: the default is false. If the value is set to true, the stream
might remain in an inconsistent state, or data may be lost, when the
forced closing occurs.

Stream properties are expressed via the stream property(Stream, Property)

predicate, where Property is one of the following:

• file name(File) if the stream is connected to a file, returns a unique
identifier of the file;

• mode(Mode) is to be specified when the stream is opened: Mode can
be read, write or append;

• input if the stream is connected to a source;

• output if the stream is connected to a sink;

• alias(Alias) returns the stream alias, if the stream has one;

120

user input user output

mode(read) mode(append)

input output

alias(user input) alias(user output)

eof action(reset) eof action(reset)

reposition(false) reposition(false)

type(text) type(text)

Table 5.8: The default configuration of the standard I/O streams.

• position(Pos) returns the current stream position, if the stream can
be repositioned;

• end of stream(End) returns either not, if the stream is not at the
end, or at, if the stream is precisely at the end, or past if the stream
is past the end of the stream;

• eof action(Action) returns the Action specified when the stream
was opened, if there was one, or an implementation-dependent action
associated to the stream, otherwise;

• reposition(Bool) returns whether the stream can be repositioned
(true or false);

• type(Type) returns whether the stream is a binary stream or a text

stream.

The standard input and output streams are configured as in Table 5.8.
Read properties can be specified in read predicates like read term, and can
have the following forms:

• variables(Vars): when a term is read, Vars is the list of variables
found in the term; anonymous variables are included;

• variable names(VNList): when a term is read, VNList is unified
with a list of A=V pairs, where A is an atom denoting a variable name
in term read, and V is the corresponding variable in the term template;
anonymous variables are not included in the list;

• singletons(VNList): when a term is read, VNList is unified with
a list of A=V pairs, where A is an atom denoting a variable name in
term read, and V is the corresponding variable in the term template;
anonymous variables are not included in the list.

121

For instance, if a query like:
?:- read term(st, T, [variables(VL),

variable names(VN), singletons(VS)].

reads a term such as foo(A+Roger, A+), the result is:
T / foo(Xl+X2, X1+X3)

VL / [Xl, X2, X3]

VN / [’A’ = Xl, ’Roger’ = X2]

VS / [’Roger’ = X2]

Basically, the term read is scanned for variables, which are named according
to some implementation-dependent template (e.g. X1, X2, X3); these names
are used in the lists above, either to list all the variables (including the
anonymous ones—see X3 in VL), or to list the correspondence between the
actual variable names and such placeholders (VN and VS, the latter including
singleton variables only).

Analogously, write properties can be specified in write predicates like
write term, and can have the following forms:

• quoted(Bool): specifies whether each atom of functor is quoted (usu-
ally because it comes from a previous read term);

• ignore ops(Bool): if true, each compound term is returned in a
function notation. Any other option is ignored.

• numbervars(Bool): if true, the terms of the form ’$VAR’(N) are re-
placed by a system-generated variable name that uses the N th capital
letter4 followed by a the N/26 integer. For instance, ’$VAR’(51) pro-
duces Z1, since the 51th letter of the alphabet (mod 26) is Z, and
51/26=1.

5.7 SocketLibrary

Library Dependencies: BasicLibrary.
This library provides support for TCP and UDP sockets. To this end,

the library provides functionalities for

• handling server sockets—namely, creating and closing a server socket,
and accepting incoming connections;

• handling client sockets—namely, opening a socket establishing a con-
nection to a given address;

4A is considered the 0th letter.

122

• handling client/server communication, both in synchronous and asyn-
chronous mode.

As an example, let us first consider the following TCP server-side code:

server(X,Y,Z):- tcp_socket_server_open(’127.0.0.1:4444’, Sock,[]),

tcp_socket_server_accept(Sock,ClientAddr,Slave),

read_from_socket(Slave,X,[]),

write_to_socket(Slave,echo(X)),

read_from_socket(Slave,Y,[]),

write_to_socket(Slave,echo(Y)),

read_from_socket(Slave,Z,[]),

write_to_socket(Slave,echo(Z)),

tcp_socket_server_close(Sock).

to be coupled with the following TCP client-side code:

client(X,Y,Z):- tcp_socket_client_open(’127.0.0.1:4444’,Sock),

write_to_socket(Sock,test1),

read_from_socket(Sock,X,[]),

write_to_socket(Sock,test2),

read_from_socket(Sock,Y,[]),

write_to_socket(Sock,test3),

read_from_socket(Sock,Z,[]).

In this scenario, the client opens a connection towards the server – that is
supposed to be already up and running, waiting connection requests on its
server socket – and starts exchanging messages with the server.

In the UDP case, the same example would become:

server(X):- udp_socket_open(’127.0.0.1:4445’,Sock2),

udp_receive(Sock2, X , ’127.0.0.1:4444’,[]),

udp_socket_close(Sock2).

to be coupled with the following UDP client:

client(X):- udp_socket_open(’127.0.0.1:4444’,Sock),

udp_send(Sock, test1,’127.0.0.1:4444’),

udp_socket_close(Sock).

123

5.7.1 Predicates

The following socket handling predicates are provided:

• tcp socket server open/3

tcp socket server open(+Address, -Socket, +Options) is true iff
Address represents a valid Internet address, and Socket can be unified
with a newly-created server socket; Options is a possibly-empty list of
options—currently, only the maximum number od connection request
can be specified in the form of the backlog(N) term: if unspecified,
the default value is backlog(0), meaning the queue is unlimited.

Template: tcp socket server open(+term, -term, +list)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if Socket is not a variable, or the address length is
not equal to 5 during the transformation of Address from the IP:Port
form to the byte array and port number inner form.

• tcp socket server accept/3

tcp socket server accept(+ServerSocket, -ClientAddress,

-ClientSlaveSocket) is true iff ServerSocket represents a valid
server socket address, and ClientAddress can be unified with the
client address in the Address :Port form, and ClientSlaveSocket

can be unified with the newly-created client socket.

Template: tcp socket server accept(+term, -term, -term)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if ServerSocket is a variable, or is not bound to server
socket.

• tcp socket server close/1

tcp socket server close(+ServerSocket) is true iff ServerSocket

represents a valid server socket; as a side effect, the socket is closed.

Template: tcp socket server close(+term)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if ServerSocket is a variable, or is not bound to server
socket.

• tcp socket client open/2

tcp socket client open(+Address, -Socket) is true iff Address rep-
resents a valid Internet address in the Address :Port form, a server is

124

waiting for incoming connection at that address, and Socket is unified
with a newly-created socket.

Template: tcp socket client open(+term, -term)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if Socket is not a variable, or the address length is
not equal to 5 during the transformation of Address from the IP:Port
form to the byte array and port number inner form.

• write to socket/2

write to socket(+Socket, +Msg) is true iff Socket represents a valid
socket with an open associated output stream, and Msg is a valid term
representing the message to be sent; as a side effect, the message is
sent onto the stream.

Template: write to socket(+term, +term)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if Socket is a variable, or is not bound to client socket,
or Msg is a variable.

• read from socket/2

read from socket(+Socket, -Msg, +Options) is true iff Socket rep-
resents a valid socket with an open associated input stream, and
Options is a valid option list—currently, only a timeout in millisec-
onds can be specified; as a side effect, a message is read from the
stream and unified with Msg. If no message is available, the primitive
suspends until one arrives (synchronous behaviour).

Template: read from socket(+term, -term, +list)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if Socket is a variable, or is not bound to client socket,
or Msg is a variable.

• aread from socket/2

aread from socket(+Socket, +Options) is the asynchronous version
of the above primitive; again, it is true iff Socket represents a valid
socket with an open associated input stream, and Options is a valid
option list. As a side effect, a message is eventually read from the
stream and asserted into the current prolog theory via asserta. Two
options are available: the first makes it possible to set a timeout in
milliseconds, as above; the other makes it possible to specify that the
message is eventually asserted at the end of the current theory (i.e.

125

via assertz) instead of at the top (i.e. via asserta, the default be-
haviour).

Template: aread from socket(+term, +list)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if Socket is a variable, or is not bound to client socket
(only client sockets can asynchronously read from a server).

• udp socket open/2

udp socket open(+Address, -DatagramSocket) is true iff Address

represents a valid Internet address in the Address :Port form, a server
is waiting for incoming connection at that address, and DatagramSocket

is unified with a newly-created datagram socket.

Template: udp socket open(+term, -term)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if Socket is not a variable, or the address length is
not equal to 5 during the transformation of Address from the IP:Port
form to the byte array and port number inner form.

• udp socket close/1

udp socket close(DatagramSocket) is true iff DatagramSocket rep-
resents a valid datagram socket; as a side effect, the socket is closed.

Template: udp socket close(+term)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if DatagramSocket is a variable, or is not bound to
datagram socket.

• udp send/3

udp send(-DatagramSocket, +Msg, +AddressTo) is true iff Msg is a
valid term representing the message to be sent, and AddressTo rep-
resents the destination address in the Address :Port form; as a side
effect, DatagramSocket is bound to the datagram socket associated to
the output stream, and the message is sent onto the stream.

Template: udp send(+term, +term, +term)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if DatagramSocket is a not variable, or the address
length is not equal to 5 during the transformation of AddressTo from
the IP:Port form to the byte array and port number inner form.

126

• udp receive/4

udp receive(-DatagramSocket, -Msg, +AddressTo, +Options) is
true iff
AddressTo represents the destination address in the Address :Port

form, and Options is a possibly-empty option list; currently, the avail-
able options are max msg size(+Size), whose default value is 4096
bytes, and timeout(+Time), which specifies a timeout: a value of
0 stands for infinite waiting. Upon reception of a message, as a
side effect, the Msg term is unified with the incoming message, and
DatagramSocket is bound to a datagram socket associated to the in-
put stream.

Template: udp receive(+term, +term, +term, +list)

Exception: error(instantiation error, instantiation error(

Goal, ArgNo)) if DatagramSocket is not a variable, or the address
length is not equal to 5 during the transformation of AddressTo from
the IP:Port form to the byte array and port number inner form.

5.7.2 Operators

No operators are defined in this library.

5.7.3 Use from the Java side: term hierarchy extension

In order to support the use of sockets from the Java side, SocketLibrary
enhances the Term hierarchy by introducing four further Term types that
represent sockets: more precisely, AbstractSocket (a direct child of Term)
represents the generic socket, whose concrete realisations are provided by
its three children— Client Socket and Server Socket in the TCP case,
Dataggram Socket in the UDP case.

Consequently, AbstractSocket redefines some Term methods and defines
some new abstract methods, implemented in the derived classes Client Socket

and Server Socket:

• public abstract boolean isClientSocket();

• public abstract boolean isServerSocket();

• public abstract boolean isDatagramSocket();

• public abstract Object getSocket();

• public abstract InetAddress getAddress();

127

In order to show the use of the SocketLibrary functions from Java, here are
some small code chunks used in the JUnit test suite:

@Test

public void testTcp_socket_client_open_2() throws PrologException, PrologError {

String theory="client(X) :- tcp_socket_client_open(’127.0.0.1:4444’,Sock).";

engine2.setTheory(new Theory(theory));

SolveInfo goal=engine2.solve("client(X).");

assertTrue(goal.isSuccess());

}

@Test

public void testTcp_socket_client_open_2() throws PrologException, PrologError {

Struct Address=new Struct("127.0.0.1:4444");

Term Socket= new Var();

SocketLib lib= (SocketLib) engine2.getLibrary("alice.tuProlog.lib.SocketLib");

boolean res=lib.tcp_socket_client_open_2(Address, Socket);

assertTrue(res);

}

@Test

public void testWrite_to_socket_2() throws InvalidTheoryException,

MalformedGoalException, PrologError {

String theory = "client(X,Y,Z):tcp_socket_client_open(’127.0.0.1:4444’,Sock),"

+ "write_to_socket(Sock,test1)."

engine2.setTheory(new Theory(theory));

SolveInfo goal=engine2.solve("client(X,Y,Z).");

assertTrue(goal.isSuccess());

}

128

Chapter 6

tuProlog Exceptions

ss

6.1 Exceptions in ISO Prolog

Exception handling was first introduced in the ISO Prolog standard (ISO/IEC
13211-1) in 1995.

The first distinction has to be made between errors and exceptions. An
error is a particular circumstance that interrupts the execution of a Prolog
program: when a Prolog engine encounters an error, it raises an exception.
The exception handling support is supposed to intercept the exception and
transfer the execution flow to a suitable exception handler, with any relevant
information. Two basic principles are followed during this operation:

• error bounding – an error must be bounded and not propagate through
the entire program: in particular, an error occurring inside a given
component must either be captured at the component’s frontier, or
remain invisible and be reported nicely. According to ISO Prolog, this
is done via the catch/3 predicate.

• atomic jump – the exception handling mechanism must be able to exit
atomically from any number of nested execution contexts. According
to ISO Prolog, this is done via the throw/1 predicate.

In practice, the catch(Goal, Catcher, Handler) predicate enables the
controlled execution of a goal, while the throw(Error) predicates makes it
possible to raise an exception—very much like the try/catch construct of
many imperative languages.

129

Semantically, executing the catch(Goal, Catcher, Handler) means
that Goal is first executed: if an error occurs, the subgoal where the error
occurred is replaced by the corresponding throw(Error), which raises the
exception. Then, a matching catch/3 clause – that is, a clause whose second
argument unifies with Error – is searched among the ancestor nodes in the
resolution tree: if one is found, the path in the resolution tree is cut, the
catcher itself is removed (because it only applies to the protected goal, not
to the handler), and the Handler predicate is executed. If, instead, no such
matching clause is found, the execution simply fails.

So, catch(Goal, Catcher, Handler) performs exactly like Goal if no
exception are raised: otherwise, all the choicepoints generated by Goal are
cut, a matching Catcher is looked for, and if one is found Handler is ex-
ecuted, maintaining the substitutions made during the previous unification
process. Then, execution continues with the subgoal following catch/3. Any
side effects possibly occurred during the execution of a goal are not undone
in case of exceptions—as it normally happens when a predicate fails.

Summing up, catch/3 succeeds if:

• call(Goal) succeeds (standard behaviour);

–OR–

• call(Goal) is interrupted by a call to throw(Error) whose Error

unifies with Catcher , and the subsequent call(Handler) succeeds.

If Goal is non-deterministic, it can be executed again in backtracking. How-
ever, since all the choicepoints of Goal are cut in case of exception, Handler
is possibly executed just once.

As an example, let us consider the following toy program:

p(X):- throw(error), write(’---’).

p(X):- write(’+++’).

with the following query:

?:- catch(p(0), E, write(E)), fail.

which tries to execute p(0), catching any exception E and handling the error
by just printing it on the standard output (write(E)).

Perhaps surprisingly, the program will just print ’error’, not ’error---’
or ’error+++’. The reason is that once the exception is raised, the execu-
tion of p(X) is aborted, and after the handler terminates the execution

130

proceeds with the subgoal following catch/3, i.e. fail. So, write(’---’)
is never reached, nor is write(’+++’) since all the choicepoints are cut upon
exception.

6.1.1 Error classification

This classification was already presented in Section 4.4 above as a hint to
predicate and functor readability: however, we report it here too both for
completeness and for the reader’s convenience.

When an exception is raised, the relevant error information is also trans-
ferred by instantiating a suitable error term.

The ISO Prolog standard prescribes that such a term follows the pattern
error(Error term, Implementation defined term) where Error term is
constrained by the standard to a pre-defined set of values (the error cate-
gories), and Implementation defined term is an optional term providing
implementation-specific details. Ten error categories are defined:

1. instantiation error: when the argument of a predicate or one of its
components is an unbound variable, which should have been instanti-
ated. Example: X is Y+1 when Y is not instantiated at the time is/2

is evaluated.

2. type error(ValidType, Culprit): when the type of an argument
of a predicate, or one of its components, is instantiated, but is bound
to the wrong type of data. ValidType represents the expected data
type (one of atom, atomic, byte, callable, character, evaluable,
in byte, in character, integer, list, number, predicate indicator,
variable), and Culprit is the actual (wrong) type found. Example:
a predicate expecting months to be represented as integers in the range
1–12 called with an argument like march instead of 3.

3. domain error(ValidDomain, Culprit): when the argument type is
correct, but its value falls outside the expected range. ValidDomain is
one of character code list, not empty list, not less than zero,
close option, io mode, operator priority, operator specifier,
flag value, prolog flag, read option, write option, source sink,
stream, stream option, stream or alias, stream position,
stream property. Example: a predicate expecting months as above,
called with an out-of-range argument like 13.

4. existence error(ObjectType, ObjectName): when the referenced
object does not exist. ObjectType is the type of the unexisting object

131

(one of procedure, source sink, or stream), and ObjectName is the
missing object’s name. Example: trying to access an unexisting file like
usr/goofy leads to an existence error(stream, ’usr/goofy’).

5. permission error(Operation, ObjectType, Object): whenever
Operation (one of access, create, input, modify, open, output, or
reposition) is not allowed on Object , of type ObjectType (one of
binary stream, past end of stream, operator, private procedure,
static procedure, source sink, stream, text stream, flag).

6. representation error(Flag): when an implementation-defined limit,
whose category is given by Flag (one of character, character code,
in character code, max arity, max integer, min integer), is vio-
lated during execution.

7. evaluation error(Error): when the evaluation of a function pro-
duces an out-of-range value (one of float overflow, int overflow,
undefined, underflow, zero divisor).

8. resource error(Resource): when the Prolog engine does not have
enough resources to complete the execution of the goal. Resource can
be any term useful to describe the situation. Examples: maximum
number of opened files reached, no further available memory, etc.

9. syntax error(Message): when data read from an external source
have an incorrect format or cannot be processed for some reason.
Message can be any term useful to describe the situation.

10. system error: any other unexpected error not falling into the previous
categories.

6.2 Exceptions in tuProlog

tuProlog aims to fully comply to ISO Prolog exceptions. In the following, a
set of mini-examples are presented which highlight each one single aspect of
tuProlog compliance to the ISO standard.

6.2.1 Examples

Example 1: Handler must be executed maintaining the substitutions made
during the unification process between Error and Catcher

132

Program: p(0) :- throw(error).

Query: ?- catch(p(0), E, atom length(E, Length)).

Answer: yes.

Substitutions: E/error, Length/5

Example 2: the selected Catcher must be the nearest in the resolution tree
whose second argument unifies with Error

Program: p(0) :- throw(error).

p(1).

Query: ?- catch(p(1), E, fail), catch(p(0), E, true).

Answer: yes.

Substitutions: E/error

Example 3: execution must fail if an error occurs during a goal execution
and there is no matching catch/3 predicate whose second argument unifies
with Error

Program: p(0) :- throw(error).

Query: ?- catch(p(0), error(X), true).

Answer: no.

Example 4: execution must fail if Handler is false
Program: p(0) :- throw(error).

Query: ?- catch(p(0), E, false).

Answer: no.

Example 5: if Goal is non-deterministic, it is executed again on backtrack-
ing, but in case of exception all the choicepoints must be cut, and Handler

must be executed only once
Program: p(0).

p(1) :- throw(error).

p(2).

Query: ?- catch(p(X), E, true).

Answer: yes.

Substitutions: X/0, E/error
Choice: Next solution?

Answer: yes.

Substitutions: X/1, E/error
Choice: Next solution?

Answer: no.

Example 6: execution must fail if an exception occurs in Handler

Program: p(0) :- throw(error).

Query: ?- catch(p(0), E, throw(err)).

133

Answer: no.

6.2.2 Handling Java/.NET Exceptions from tuProlog

One peculiar aspect of tuProlog is the ability to support multi-paradigm
programming, mixing object-oriented (mainly, but not exclusively, Java)
and Prolog in several ways—in particular, by enabling Java objects to be
accessed and exploited from Prolog world via JavaLibrary (see Section 7.1)
and by enabling .NET objects to be accessed and exploited from Prolog
world via OOLibrary (see Section 8.4) In this context, the problem arises of
properly sensing and handling Java/.NET exceptions from the Prolog side.

At a first sight, one might think of re-mapping such exceptions and
constructs onto the Prolog ones, but this approach is unsatisfactory for
three reasons:

• the semantics of the Java/.NET mechanism should not be mixed with
the Prolog one, and vice-versa;

• the Java/.NET construct admits also a finally clause which has no
counterpart in ISO Prolog exceptions;

• the Java/.NET catching mechanisms operates hierarchically, while the
catch/3 predicate operates via pattern matching and unification, al-
lowing for a finer-grain, more flexibly exception filtering.

Accordingly, Java/.NET exceptions in tuProlog programs are handled by
means of an ad hoc predicate, called java catch/3 in the Java case and
oo catch/3 in the .NET case, respectively. Since their behavior can be
fully understood only in the context of JavaLibrary/OOLibrary, we forward
the reader to Sections 7.1 and 8.4, respectively, for further information.

134

Chapter 7

Multi-paradigm program-
ming in Prolog and Java

tuProlog supports multi-paradigm (and multi-language) programming be-
tween Prolog and Java in a complete, four-dimensional way:

• using Java from Prolog: JavaLibrary

• using Prolog from Java: the Java API

• augmenting Prolog via Java: developing new libraries

• augmenting Java via Prolog: the P@J framework

7.1 Using Java from Prolog: JavaLibrary

The first MPP dimension offered by tuProlog is the ability to fully access
Java resources (objects, classes, methods, etc) in a full-fledged yet straight-
forward way, completely avoiding the intricacies (object and method pre-
declarations in some awkward syntax, pre-compilations, etc) that are of-
ten found in other Prolog systems. The unique tuProlog approach keeps
the two computational models clearly separate, so that neither the Pro-
log nor the Java semantics is affected by the coexistence of the logical and
imperative/object-oriented paradigms in the same program. In this way,
any Java package, library, etc. is immediately available to the Prolog world
with no effort, according to the motto “one library for all libraries”. So, for
instance, Swing classes can be easily exploited to build the graphical support
of a Prolog program, and the same holds for JDBC to access databases, for

135

the socket package to provide network access, for RMI to access remote Java
objects, and so on.

The two basic bricks of JavaLibrary are:

• the mapping between Java types and suitable Prolog types;

• the set of predicates to perform operations on Java objects.

7.1.1 Type mapping

The general mapping between Prolog types and Java types is summarized
in Table 7.1.

Categories From Prolog to Java From Java to Prolog

integers Prolog integers are mapped
onto Java int or long types,
as appropriate

all Java integer types are
mapped onto Prolog (inte-
ger) numbers

reals Prolog reals are mapped
onto Java double

all Java floating-point types
are mapped onto Prolog
(real) numbers

booleans N/A Boolean Java values are
mapped onto ad-hoc con-
stants (true and false)

strings Prolog atoms are mapped
onto Java Strings

Java chars and Strings are
mapped onto Prolog atoms

wildcards Prolog indifference (the any
variable ()) is mapped onto
the Java null costant

The Java null value is
mapped onto the Prolog any
variable ()

Table 7.1: Prolog/Java type mapping.

Two aspects are worth highlighting:

• although the Prolog language considers a comprehensive number type
for both integer and real values, the two kinds are considered sep-
arately in this table, both for the user’s convenience and because
tuProlog internally does use different types for this purpose (indeed,
the tuProlog internal representation of numbers does distinguish Number

into Int, Long, Double and Float, based on the value to be stored—
details in Section 7.4.1). More precisely, in the Prolog-to-Java direc-
tion, only the Java int, long and double types are used as target
types for the mapping, while in the opposite Java-to-Prolog direction

136

any of the numeric Java types are accepted (including short, byte

and float) for mapping onto Prolog numbers.

• since the Prolog language does not include a specific boolean type, the
table reports N/A in the Prolog-to-Java direction; however, the true

and false atoms can be provided to Java methods when appropriate,
as Java boolean methods return/accept these atoms when boolean
values are involved.

7.1.2 Creating and accessing objects: an overview

JavaLibrary provides many predicates to access, manipulate and interact
with Java objects and classes in a complete way. In this section, the funda-
mental predicates are presented that enable the Prolog user to create and
access Java objects—that is, calling methods and getting return values. A
detailed description of all the available features is reported in Section 7.1.3.

For the sake of concreteness, Table 7.2 reports a simple Java class (a
counter) and the Prolog program that exploits it via JavaLibrary.

Object creation Java objects are created via the predicate

java object(ClassName, ArgList, ObjRef)

where ClassName is a Prolog atom bound to the name of the Java class
(e.g. ’Counter’, ’java.io.FileInputStream’, etc.), ArgList is a
Prolog list supplying the required arguments to the class constructor
(the empty list matches the default constructor), and ObjRef holds the
reference to the newly-created object. In the case of arrays, ClassName
ends with [].

It is worth highlighting that the class is searched in the current class
path: if the class to be loaded is on a different path, the set classpath/1

(and the dual get classpath/1) predicates can be used to alter per-
manently – that is, with a side effect on the engine’s state – the en-
gine’s current class path. Please note that such a permanent setting
also affects the other JavaLibrary predicates, such as as/2 (cast), array
predicates, etc., and will not be reset on backtracking.

The reference to the newly-created object is bound to ObjRef , which
is typically a ground Prolog term; alternatively, an unbound term may
be used, in which case the term is bound to an automatically-generated
Prolog atom of the form ’$obj_N’, where N is an integer.

137

In both cases, these atoms are interpreted as object references – and
therefore used to operate on the Java object from Prolog – only in the
context of JavaLibrary’s predicates: this is how tuProlog guarantees
that the two computational models are never mixed, and therefore
that each semantics is preserved.

The predicate fails if ClassName does not identify a valid Java class,
or the constructor does not exists, or arguments in ArgList are not
ground, or ObjRef already identifies another object in the system.

The lifetime of the binding between the Java object and the Prolog
term is the duration of the demonstration: by default, the binding is
maintained in case of backtracking, but this behavior can be changed
by setting the flag java object backtrackable flag to true.

To make such a binding permanent, that is, to “keep alive” the bind-
ing between a Java object and a Prolog term beyond the current
query, so as to exploit it in another, subsequent demonstration, the
register/1 predicate is provided (new in tuProlog 2.6), along with
its unregister/1 counterpart; this can also be done on the Java
side, via the tuProlog Java API. However, this feature should not
be abused: generally speaking, when operating from the Prolog side,
objects needed by other predicates (within the same demonstration)
should be passed over as arguments, coherently with the Prolog philos-
ophy of avoiding any global side effect (except for assert predicates).

method calling methods can be invoked on Java objects via the <-/2

predicate, according to a send-message pattern. The predicate comes
in two flavors, with/without return argument:

ObjectRef <- MethodName (Arguments)

ObjectRef <- MethodName (Arguments) returns Term

where ObjectRef is an atom interpreted as a Java object reference as
above, and MethodName is the Java name of the method to be invoked,
along with its Arguments .

The returns keyword is used to retrieve the value returned from non-
void Java methods and bind it to a Prolog term: if the type of the
returned value can be mapped onto a primitive Prolog data type (a
number or a string), Term is unified with the corresponding Prolog
value; otherwise, Term is handled as an object reference, that is, as a
Prolog ground term1 bound to the Java object returned by the method.

1If it is not ground, it is automatically bound to a term like $obj N.

138

Static methods can also be invoked, specifying the special term class(ClassName)

as the target ObjRef .

The call fails if MethodName does not identify a valid method for the
object (for the class, in the case of static methods), or arguments in
ArgList are invalid because of a wrong signature or because they are
not ground.

property selection public object properties can be accessed via the . infix
operator, in conjunction with the set / get pseudo-method pair:

ObjectRef.Field <- set(GroundTerm)

ObjectRef.Field <- get(Term)

The first construct sets the public field Field to the specified GroundTerm ,
which may be either a value of a primitive data type, or a reference to
an existing object: if it is not ground, the infix predicate fails.

Analogously, the second construct retrieves the value of the public field
Field , handling the returned Term as above.

Again, class properties can be accessed using the class(ClassName)

form for ObjectRef .

It is worth to point out that such set / get pseudo-methods are not
methods of some class, but just part of of the property selection oper-
ator.

array access Due to the special Java syntax for arrays, ad hoc helper pred-
icates are required to access Java array elements:

java array set(ArrayRef, Index, Object)

java array get(ArrayRef, Index, Object)

java array length(ArrayObject, Size)

type cast the as infix operator is used to explicitly cast method arguments
to a given type, so as to match the overloading resolution:

ObjectRef as Type

By writing so, the object represented by ObjectRef is considered to
belong to type Type , which can be either a class name, as above, or a
primitive Java type such as int. It is important to highlight that this
operator may be used only inside method calls: it is not available as a
general tool to cast objects arbitrarily.

139

classpath specification and class loading The set classpath/1 and get classpath/1

respectively sets/gets the given path list into a tuProlog engine perma-
nently; accordingly, after a path has been set via set classpath/1,
all the JavaLibrary predicates (object creation, method calling, etc)
will refer to that class path.

The following syntactic conventions apply:

• any path entry ending with ’/’ or \ is supposed to be a prefix of
the class name;

• any path entry ending with ’.jar’ is supposed to be a JAR
archive.

So, an entry like ’foo/bar/’ causes the tuProlog class loader to look
for foo/bar/classname.class, while an entry like ’mylib.jar’ causes
the tuProlog class loader to look for classname.class in the specified
JAR.

dynamic compilation The java class/4 creates, compiles and loads a
new Java class from a source text:

java class(SourceText, FullClassName,

PathList, ObjectRef)

where SourceText is a string representing the text source of the new
Java class, FullClassName is the full class name, and PathList is a
(possibly empty) Prolog list of class paths that may be required for a
successful dynamic compilation of this class. In this case, ObjectRef
is a reference to an instance of the meta-class java.lang.Class rep-
resenting the newly-created class.

The predicate fails if SourceText leads to compilation errors, or the
class cannot be located in the package hierarchy, or ObjectRef already
identifies another object in the system.

Exceptions thrown by Java methods or constructors can be managed by
means of tuProlog’s special java catch predicate, discussed in Section 7.1.7.

7.1.2.1 Examples

To taste the flavor of JavaLibrary, let us consider the example shown in
Table 7.2, which reports both a simple Java class (a counter) and the Prolog
program that exploits it via JavaLibrary.

140

Java class:

public class Counter {

public String name;

private long value = 0;

public Counter() {}

public Counter(String aName) { name = aName; }

public void setValue(long val) { value=val; }

public long getValue() { return value; }

public void inc() { value++; }

static public String getVersion() { return "1.0"; }

}

Prolog program:

?- java_object(’Counter’, [’MyCounter’], myCounter),

myCounter <- setValue(5),

myCounter <- inc,

myCounter <- getValue returns Value,

write(Value), nl,

class(’Counter’) <- getVersion returns Version,

write(Version), nl,

myCounter.name <- get(Name),

class(’java.lang.System’) . out <- get(Out),

Out <- println(Name),

myCounter.name <- set(’MyCounter2’),

java_object(’Counter[]’, [10], ArrayCounters),

java_array_set(ArrayCounters, 0, myCounter).

Table 7.2: The Java Counter class and the Prolog program that exploits it
via JavaLibrary.

141

First, a Counter instance is created (line 1) providing the MyCounter

name as the constructor argument: the reference to the new object is bound
to the Prolog atom myCounter.

Then, this reference is used to invoke several methods (lines 2–4) via the
<-/2 and the (<-,returns)/3 operators—namely, setValue(5) (which is
void and therefore returns nothing), inc (which takes no arguments and is
void, too) and getValue (which takes no argument but returns an int value);
the returned value (hopefully, 5) is bound to the X Prolog variable, which
is finally printed via the Prolog write/1 predicate (line 5). Of course, the
predicate succeeds also if X is already bound to 5, while fails if it is already
bound to anything else.

Then, the class (static) method getVersion is called (line 6) and the
retrieved version number is printed (line 7).

Now the (public) instance Name property is read, and its value printed
via the Java System.out.println method: to this end, a reference to the
java.lang.System class is first obtained (line 8), then its out (static) field
is accessed and its value retrieved and bound to the Out Prolog variable (line
9), which is used as the target for the invocation of the println method
(line 10). Finally, the name property of the myCounter object is changed to
the new ’MyCounter2’ value (line 11).

The last part of the example deals with an array of 10 Counters: the
array is first created (line 12), and the myCounter object is assigned to its
first (0th) element (line 13).

The key point is that the only requirement here is the presence of the
Counter.class file in the proper location in the file system, according to
Java naming conventions: no other auxiliary information is needed—no
headers, no pre-declarations, pre-compilations, etc.

Table 7.3 shows an example of type cast via the as infix operator. The
Java static method Math.cos requires a double argument, so the first call
to cos y with argument 15.0 succeeds, while the second call with argument
15 fails. Using the as operator, however, the argument can be dynamically
cast to double, thus preventing the failure: thus, the call to cos x with
argument 15 now succeeds. Of course, since the as operator may only be
used to cast a method argument (not to cast objects arbitrarily), a call like:

java object(’java.lang.Long’, [176], X), X as double.

just fails (raising no exceptions), like any call to an undefined predicate.
Table 7.4 shows one further example, where the Java Swing API is ex-

ploited to graphically choose a file from Prolog: a Swing JFileChooser

dialog is instantiated and bound to the Prolog variable Dialog (a univocal
Prolog atom of the form ’$obj_N’, to be used as the object reference, is auto-

142

Only valid for double arguments:

cos_y(Y,CosY) :-

class(’java.lang.Math’) <- cos(Y) returns CosY,

write(CosY), nl.

Valid for all numeric arguments:

cos_x(X,CosX) :-

class(’java.lang.Math’) <- cos(X as double) returns CosX,

write(CosX), nl.

Test queries:

?- cos_y(15.0, CY).

yes

CY / -0.7596879128588213

?- cos_y(15, CY).

halt (Java NullPointerException)

?- cos_x(15, CX).

yes

CX / -0.7596879128588213

Table 7.3: Using the as infix operator to cast a method argument to the
proper type.

143

test_open_file_dialog(FileName) :-

java_object(’javax.swing.JFileChooser’, [], Dialog),

Dialog <- showOpenDialog(_),

Dialog <- getSelectedFile returns File,

File <- getName returns FileName.

Table 7.4: Creating and using a Swing component from a tuProlog program.

matically generated and bound to that variable) and is then used to invoke
the showOpenDialog and getSelectedFile methods: the Prolog anony-
mous variable is used to represent the Java null value in showOpenDialog.
The File object returned by the file chooser is finally queries for the corre-
sponding FileName, which is returned to the outer predicate caller.

7.1.2.2 Registering object bindings

As explained above, the standard lifetime of the binding between Java ob-
jects and Prolog atoms is that of the current demonstration, in coherence
with the lifetime of Prolog variable bindings. However, some multi-paradigm
applications may require that a Java object is maintained alive and retrieved
later without passing it along as an argument throughout the program: this
is what the register predicate is for. Its syntax is as follows:

register(ObjectRef)

where ObjectRef is already bound to some Java object. The effect is
to make such binding survive the current demonstration, until the dual
unregister predicate is possibly called:

unregister(ObjectRef)

The requirement that ObjectRef is already bound to some Java object
inherently excludes pre-existing, non-public Java objects from being regis-
tered, since the only ways to establish a binding between a Prolog atom and
a Java object from the Prolog side are the java object predicate, which cre-
ates a new instance, and the property selection operator (.,<-get(Name)),
which accesses public properties. Public Java objects, including the static
ones like System.out, can instead be registered by retrieving a reference to
their binding first—as in the example shown in Table 7.2 above, where a

144

reference to System.out is retrieved to call the println method.
Binding registration can be performed also on the Java side, as detailed

in Section 7.2.5.

7.1.3 Predicates

The following predicate description details all the JavaLibrary predicates:
a summary overview is also reported in Table 7.5. Throughout this Sec-
tion, only the exceptions specifically related to the JavaLibrary predicates’
behaviors are listed: other exceptions might obviously occur, based on the
exceptions possibly raised by the invoked method, which can not be foreseen
in any way.

7.1.3.1 Object creation, class compilation and method invocation

• java object/3

java object(ClassName, ArgList, ObjectRef) instantiates a new
instance of class ClassName (full class name on the current class path)
and initializes it via the Java constructor matching the arguments
in ArgList ; the newly created Java object is bound to the Prolog
term ObjectRef , which can be any ground term (except for numbers)
or a Prolog variable (in which case it is bound to an automatically-
generated ground term). By default, such a binding is not undone
on backtracking, unless the java object backtrackable flag is set to
true (see Section 7.1.2).

Template: java object(+class name, +arg list, ?object ref)

Exception: java.lang.ClassNotFoundException(Cause, Message,

StackTrace) if ClassName does not identify a valid class name on the
local file system.

Exception: java.lang.NoSuchMethodException(Cause, Message,

StackTrace) if the specified constructor could not be found.

Exception: java.lang.reflect.InvocationTargetException(Cause,

Message, StackTrace) if the constructor arguments are invalid—for
instance, because they are not ground.

Exception: java.lang.Exception(Cause, Message, StackTrace) if
ObjectRef is already bound to another Java object.

• java object bt/3

everything as above, but the binding is undone on backtracking.

145

Functionality Predicate(s) Description

Object creation java object(+ClassName, +ArgList, ?Ref)

java object(+‘ClassName []’, [+Len], ?Ref)

Examples:
java object(‘java.awt.Point’, [2,3], P)

java object(‘java.lang.Integer’, [303], n)

java object(‘java.awt.Point’[], [100], V)

The first form creates a ClassName

instance using the construc-
tor matching the arguments in
ArgList ; the second form creates
an array of ClassName. Ref is
bound to a term representing the
new object (possibly a system-
generated atom like ’$obj N ’).

Method
invocation

TargetRef <- MethodName

TargetRef <- MethodName (+Arg0,+Arg1,...)

TargetRef <- MethodName returns Res

TargetRef <- MethodName (+Arg0,+Arg1,...)

returns Res

Example 1:
java object(‘java.awt.Point’, [2,3], P),

P <- getX returns X

Example 2:
Intclass = class(‘java.lang.Integer’),

Intclass <- parseInt(‘200’) returns N

Invokes the method MethodName

on the object associated to the
TargetRef term, possibly passing
arguments Arg0, Arg1, etc., and
possibly binding the return argu-
ment to the Res term.
Static methods are invoked using
class(ClassName) as TargetRef .

Field properties TargetRef . FieldName <- set(+Arg)

TargetRef . FieldName <- get(+Arg)

Accesses the public field (property)
FieldName of object TargetRef to
set/get its value to Arg . For static
fields, TargetRef takes the form
class(ClassName).

Array
management java array set(+ArrayRef, +Pos, +Content)

java array get(+ArrayRef, +Pos, ?Content)

java array length(+ArrayRef, ?Length)

Example 1:
java object(‘java.awt.Point[]’, [100], A),

java object(‘java.awt.Point’, [1,2], P1),

java array set(A, 0, P1)

Example 2:
java object(‘int[]’, [5], A),

java object(‘java.lang.Integer’, [51], X),

java array set(A, 0, X),

java array get(A, 0, V0) % retrieves 51

Accesses position Pos of the ar-
ray bound to the ArrayRef term to
set/get the content of that position
to the object reference associated to
the Content term.
The third predicate retrieves the
array length and binds it to the
Length term.
Note that primitive values must
be wrapped appropriately: the di-
rect use of primitive constants is
not supported in array management
predicates (see Example 2 aside).

Cast Arg as TypeName

Example:
X=2, % integer value

class(’java.lang.Math’) <- cos(X as double)

returns CosX

Casts Arg to TypeName for over-
loading resolution purposes. Note
that this predicate is only usable in
method calls, not to cast object in-
stances arbitrarily.

Dynamic class
compilation

java class(+Source, +ClassName,

+PathList, ?ClassRef)

Dynamically compiles the source
text Source to define the new class
named ClassName . PathList de-
notes the class path to be used for
compilation. The compiled class,
available as a Class instance, is as-
sociated to the ClassRef term.

Table 7.5: Summary of JavaLibrary predicates.

146

• destroy object/1

destroy object(ObjectRef) removes the binding possibly established
between ObjectRef and an underlying Java object.

Template: destroy object(@object ref)

• java class/4

java class(SourceText, ClassName, PathList, ObjectRef) creates
the new Java class ClassName from the provided SourceText , com-
piles it dynamically using to the classes in the provided PathList, and
binds the result – a suitable instance of the meta-class Class – with
the Prolog term ObjectRef.

Template: java class(@source, @classname, @path, ?obj ref)

Exception: java.lang.ClassNotFoundException(Cause, Message,

StackTrace) if ClassName does not identify a valid class name in the
package hierarchy on the local file system.

Exception: java.lang.IOException(Cause, Message, StackTrace)

if SourceText contains errors that prevent the class from being com-
piled.

Exception: java.lang.Exception(Cause, Message, StackTrace) if
ObjectRef is already bound to another Java object.

• java call/3

java call(ObjectRef, Method, ResultRef) is the basic method im-
plementing the infix <-/2 and (<-,returns)/3 operators below. It is
true iff ObjectRef is a ground term bound to a Java object, and
this provides a method Method (that is, whose name is the functor
name and whose arguments are the arguments of the compound term
Method); ResultRef is a Prolog term bound to the returned value.
ObjectRef takes the form class(ClassName) for static methods.

If needed, the Prolog anonymous variable can be used as an argument
for the Java null value.

Template: java call(@obj id, @method signature, ?ResultRef)

Exception: java.lang.NoSuchMethodException(Cause, Message,

StackTrace) if the specified method could not be found in the target
object/class, or the method arguments are invalid.

• <-/2

ObjectRef <- Method calls the Java method represented by the Method

147

compound term on the target Java object ObjectRef. The same ar-
gument specifications of java call above apply.

Template: ’<-’(@obj id, @method signature)

Exception: as above

• (<-,returns)/3
ObjectRef <- Method returns ResultRef calls the Java method rep-
resented by the Method compound term on the target Java object
ObjectRef, retrieving the method result into ResultRef. The same
argument specifications of java call above apply.

Formally, this operator is defined as the binary returns/2 predicate,
whose first argument has the form of the above <-/2 predicate (see
Table 7.6 below for these operators’ priorities).

Template: returns(’<-’(@obj id, @method signature), ?@obj id)

Exception: as above

7.1.3.2 Array management

• the java array set */3 family
This family of predicates is composed of one main predicate handling
arrays of objects, and a set of helper predicates handling arrays of
primitive Java types.

java array set(ArrayRef, Index, ObjectRef) is the main predi-
cate, setting the Indexth cell of the array ArrayRef to ObjectRef

(i.e., ArrayRef[Index]=ObjectRef). So, ArrayRef is a ground term
referencing a Java array object, Index is a valid 0-based index for that
array, and ObjectRef is a ground term bound to a Java object (of
an assignment-compatible type according to the Java type rules) to
be inserted into the array at the given position. As above, the Pro-
log anonymous variable can be used as ObjectRef to denote the Java
null value.

Arrays of primitive Java types are handled analogously by the following
set of helper predicates:

java array set int(ArrayRef, Index, Integer)

java array set short(ArrayRef, Index, ShortInteger)

java array set long(ArrayRef, Index, LongInteger)

java array set float(ArrayRef, Index, Float)

java array set double(ArrayRef, Index, Double)

148

java array set char(ArrayRef, Index, Char)

java array set byte(ArrayRef, Index, Byte)

java array set boolean(ArrayRef, Index, Boolean)

Template: java array set(@obj id, @nonneg integer, +obj id)

Exception: java.lang.IllegalArgumentException(Cause, Message,

StackTrace) if the ArrayRef does not refer to a valid array object, or
Index is incorrect, or ObjectRef is not type-assignable to the array.

• the java array get */3 family
This family of predicates is composed of one main predicate handling
arrays of objects, and a set of helper predicates handling arrays of
primitive Java types.

java array get(ArrayRef, Index, ObjectRef) is the main predi-
cate, getting the Indexth cell of the array ArrayRef into ObjectRef

(i.e., ObjectRef=ArrayRef[Index]). So, ArrayRef is a ground term
referencing a Java array object, Index is a valid 0-based index for that
array, and ObjectRef is a ground term unified with the reference to the
Java object (of an assignment-compatible type according to the Java
type rules) at the given array position. Again, the Prolog anonymous
variable can be used as ObjectRef to denote the Java null value.

Arrays of primitive Java types are handled analogously by the following
set of helper predicates:

java array get int(ArrayRef, Index, Integer)

java array get short(ArrayRef, Index, ShortInteger)

java array get long(ArrayRef, Index, LongInteger)

java array get float(ArrayRef, Index, Float)

java array get double(ArrayRef, Index, Double)

java array get char(ArrayRef, Index, Char)

java array get byte(ArrayRef, Index, Byte)

java array get boolean(ArrayRef, Index, Boolean)

Template: java array get(@obj id, @nonneg integer, ?obj id)

Exception: java.lang.IllegalArgumentException(Cause, Message,

StackTrace) if the ArrayRef does not refer to a valid array object,
or Index is incorrect.

• java array length/2

java array length(ArrayRef, ArrayLength) is true iff ArrayLength

is the length of the Java array referenced by the term ArrayRef.

149

Template: java array length(@term, ?integer)

7.1.3.3 Class path handling predicates

• set classpath/1

set classpath(PathList) is true if PathList is a list of strings rep-
resenting class paths. As a side effect, the tuProlog class loader of the
current tuProlog engine is permanently configured to load classes also
from the specified paths, other than the default ones.

Template: set classpath(+path list)

• get classpath/1

get classpath(PathList) is true if PathList is an unbound variable,
which is unified with the list of strings representing the current class
paths. No side effects occur on the tuProlog class loader configuration.

Template: get classpath(?path list)

7.1.3.4 Helper predicates

• java object string/2

java object string(ObjectRef, String) is true if String is the
string representation of the Java object bound to the term ObjectRef,
according to the semantics of the object’s own toString method.

Template: java object string(@obj id, ?string)

7.1.4 Functors

No functors are provided by the JavaLibrary library.

7.1.5 Operators

The full list of JavaLibrary operators, with their priority and associativity,
is reported in Table 7.6.

7.1.6 Examples

The following examples illustrate JavaLibrary’s ways of use and flexibility.

150

Name Assoc. Prio.

<- xfx 800

returns xfx 850

as xfx 200

. xfx 600

Table 7.6: JavaLibrary operators.

7.1.6.1 RMI Connection to a Remote Object

This example shoes how to connect to a remote Java object via RMI.
To allow the reader to try this example with no need of other objects, we

connect to the remote Java object ’prolog’, an RMI server bundled with
the tuProlog package that can be spawned by typing:

java -Djava.security.all=policy.all

alice.tuprologx.runtime.rmi.Daemon

Table 7.7 shows the same code in Java and tuProlog: after the RMI (Pro-
log) server is retrieved, the remote solve method is called to execute a
demonstration onto the Prolog server.

7.1.6.2 A Swing GUI

Please see the example reported in Table 7.4 above.

7.1.6.3 Database access via JDBC

This example shows how to access a database by connecting tuProlog to the
Java JDBC interface. The program is logically divided in two parts, one
(Table 7.8) devoted to the computational aspect (calculating the minimum
path between two given cities), the other (Table 7.9) fetching the required
data from the database ‘distances’ via JDBC.

The first part is a standard Prolog program, and requires no partic-
ular comment; the second deserves some more attention. The first line
exploits the forName reflection method of the Class meta-class to obtain
a reference to the (static) JDBC/ODBC driver, thus activating the JDBC
bridge behind-the-scenes; then the second line opens the connection to the
database via the DriverManager’s getConnection factory method: the
Connection object is the return argument of the init dbase/4 predicate.

151

Java class:

System.setSecurityManager(new RMISecurityManager());

PrologRMI core = (PrologRMI) Naming.lookup("prolog");

SolveInfo info = core.solve("append([1],[2],X).");

boolean ok = info.success();

String sub = info.getSubstiturion();

System.out.println(sub);

String sol = info.getSolution();

System.out.println(sol);

Prolog program:

?- java_object(’java.rmi.RMISecurityManager’, [], Manager),

class(’java.lang.System’) <- setSecurityManager(Manager),

class(’java.rmi.Naming’) <- lookup(’prolog’) returns Engine,

Engine <- solve(’append([1],[2],X).’) returns SolInfo,

SolInfo <- success returns Ok,

SolInfo <- getSubstitution returns Sub,

Sub <- toString returns SubStr, write(SubStr), nl,

SolInfo <- getSolution returns Sol,

Sol <- toString returns SolStr, write(SolStr), nl.

Table 7.7: The RMI example in Java and in tuProlog via JavaLibrary.

152

find_path(From, To) :-

init_dbase(’jdbc:odbc:distances’, Connection, ’’, ’’),

exec_query(Connection,

’SELECT city_from, city_to, distance FROM distances.txt’,

ResultSet),

assert_result(ResultSet),

findall(pa(Length,L), paths(From,To,L,Length), PathList),

current_prolog_flag(max_integer, Max),

min_path(PathList, pa(Max,_), pa(MinLength,MinList)),

outputResult(From, To, MinList, MinLength).

paths(A, B, List, Length) :-

path(A, B, List, Length, []).

path(A, A, [], 0, _).

path(A, B, [City|Cities], Length, VisitedCities) :-

distance(A, City, Length1),

not(member(City, VisitedCities)),

path(City, B, Cities, Length2, [City|VisitedCities]),

Length is Length1 + Length2.

min_path([], X, X) :- !.

min_path([pa(Length, List) | L], pa(MinLen,MinList), Res) :-

Length < MinLen, !,

min_path(L, pa(Length,List), Res).

min_path([_|MorePaths], CurrentMinPath, Res) :-

min_path(MorePaths, CurrentMinPath, Res).

writeList([]) :- !.

writeList([X|L]) :- write(’,’), write(X), !, writeList(L).

outputResult(From, To, [], _) :- !,

write(’no path found from ’), write(From),

write(’ to ’), write(To), nl.

outputResult(From, To, MinList, MinLength) :-

write(’min path from ’), write(From),

write(’ to ’), write(To), write(’: ’),

write(From), writeList(MinList),

write(’ - length: ’), write(MinLength).

Table 7.8: Calculation of the minimum path between two given cities: the
required data are fetched from a database via JDBC as shown in Table 7.9.

153

init_dbase(DBase, Username, Password, Connection) :-

class(’java.lang.Class’) <- forName(’sun.jdbc.odbc.JdbcOdbcDriver’),

class(’java.sql.DriverManager’)

<- getConnection(DBase, Username, Password) returns Connection,

write(’[Database ’), write(DBase), write(’ connected]’), nl.

exec_query(Connection, Query, ResultSet):-

Connection <- createStatement returns Statement,

Statement <- executeQuery(Query) returns ResultSet,

write(’[query ’), write(Query), write(’ executed]’), nl.

assert_result(ResultSet) :-

ResultSet <- next returns true, !,

ResultSet <- getString(’city_from’) returns From,

ResultSet <- getString(’city_to’) returns To,

ResultSet <- getInt(’distance’) returns Dist,

assert(distance(From, To, Dist)),

assert_result(ResultSet).

assert_result(_).

Table 7.9: Accessing JDBC via tuProlog’s JavaLibrary.

Analogously, exec query/3 creates and executes the query statement, re-
turning the matching data in ResultSet; in its turn, this is iterated over by
assert result/3, which asserts a distance/3 fact for each returned tuple.

7.1.6.4 Dynamic compilation

As anticipated above, tuProlog supports the dynamic compilation of Java
classes via the java class predicate. This predicate compiles the source
file passed as a string, and represents the newly-created class as a suitable
instance of the Java Class meta-class, referenced by a Prolog term. In its
turn, this can be used to create instances via the newInstance method,
to retrieve constructors via the getConstructor method, to analyze class
methods and fields, and for other meta-services.

Table 7.10 shows a simple example of this technique: the string Source,
which contains the source of the public class Counter, is passed to the
java class/4 predicate, specifying the ’Counter’ atom as the new class
full name. The path list is empty, since the given class is autonomous from
the compilation viewpoint. If no errors are detected, the source text is
compiled and a reference to the new class is bound to the counterClass

154

?- Source = ’public class Counter { ... }’,

java_class(Source, ’Counter’, [], counterClass),

counterClass <- newInstance returns myCounter,

myCounter <- setValue(5),

myCounter <- getValue returns X,

write(X).

Table 7.10: Dynamic compilation of a Java source code.

atom; in its turn, this is exploited to create an actual Counter object, bound
to the myCounter term, via the newInstance factory method.

Now, the instance can be used as any other Java object: so, its value is
set, incremented, retrieved and printed as usual.

Table 7.11 shows a more complex example, where the source text of un
unknown class is first retrieved via FTP, and then dynamically compiled
and used to instantiate new objects.

7.1.7 Handling Java Exceptions

The handling of Prolog exceptions, according to the ISO standard, was
already presented in Chapter 6. tuProlog’s peculiar support for multi-
paradigm programming via JavaLibrary, however, opens one extra challenge:
the handling of the Java exceptions possibly raised during the execution of
Java methods on objects accessed from the Prolog world.

At a first sight, one might think of re-mapping Java exceptions and
constructs onto the Prolog one, but this would be an unsatisfactory approach
for three main reasons:

• the semantics of the Java mechanism should not be mixed with the
Prolog one, and vice-versa;

• the Java construct admits also a finally clause which has no coun-
terpart in ISO Prolog;

• the Java catching mechanisms operates hierarchically, while the ISO
Prolog catch/3 predicate operates via pattern matching and unifica-
tion, allowing for multiple granularities.

Accordingly, Java exceptions are handled in tuProlog via one further, ad hoc
predicate, java catch/3:

155

go :-

get_remote_file(’alice/tuprolog/test’, ’Counter.java’,

srvAddr, myName, myPwd, Content),

java_class(Content, ’Counter’, [], CounterClass),

CounterClass <- newInstance returns MyCounter,

MyCounter <- setValue(303),

MyCounter <- inc,

MyCounter <- inc,

MyCounter <- getValue returns Value,

write(Value), nl.

% +DirName: Directory on the server where the file is located

% +FileName: Name of the file to be retrieved

% +FTPHost: IP address of the FTP server

% +FTPUser: User name of the FTP client

% +FTPPwd: Password of the FTP client

% -Content: Content of the retrieved file

get_remote_file(DirName, FileName, FTPHost, FTPUser, FTPPwd, Content) :-

java_object(’com.enterprisedt.net.ftp.FTPClient’, [FTPHost], Client),

Client <- login(FTPUser, FTPPwd),

Client <- chdir(DirName),

Client <- get(FileName) returns Content,

Client <- quit.

Table 7.11: Another example of dynamic compilation, where the class source
is retrieved via FTP: the user myName, whose password is myPwd, gets the con-
tent of the Counter.java file from the server whose IP address is srvAddr,
dynamically compiles the class and creates a corresponding object. The
FTP service is provided here by a shareware Java library, but any other
similar library would work.

156

java catch(JavaGoal, [(Catcher1, Handler1),...,

(CatcherN, HandlerN)], Finally)

performs a controlled execution of the Java operation JavaGoal , like in a
Java try block: if a (Java) exception is raised, the best-matching Catcher

is selected, and its Handler is executed. The Finally predicate expresses
the homonomous Java option—actions be executed at the end of the block,
independently of the operation result. If unneeded, the conventional place-
holder atom (’0’) has to be used.

The predicate behaviour can be informally expressed as follows. When
JavaGoal is executed, if no exception is raised the Finally goal is exe-
cuted. Otherwise, if an exception is raised, all the choicepoints generated
by JavaGoal 2 are cut, and a matching catcher is looked for. If such a
matching catcher exists, its handler is executed, maintaining the variable
substitutions; otherwise, the resolution tree is back-searched for a matching
java catch/3 clause: if none exists, the predicate fails. Upon completion,
the Finally part is executed anyway, then the program flow continues with
the subgoal following java catch/3.

Any side effects possibly generated during the JavaGoal execution are
not undone in case of exception.

Moreover, it should be clear that java catch/3 only protects the execu-
tion of JavaGoal , not of the handler or of the Finally predicate. So, even
if JavaGoal is non-deterministic (like java object bt/3), and therefore al-
lows for re-execution in backtracking, in case of exception only one handler
is executed: then, all the choicepoints generated by JavaGoal are removed.

7.1.7.1 Java exception examples

As a first example, let us consider the following program:

?- java_catch(

java_object(’Counter’, [’MyCounter’], c),

[(’java.lang.ClassNotFoundException’(

Cause, Msg, StackTrace),write(Msg))],

write(+++)

).

This program tries to allocate an instance of Counter (the counter name,
MyCounter, is irrelevant), bind it to the atom c and, if everything goes well,
print the ’+++’ message.

2Of course, this is relevant only in the case of a non-deterministic predicate like
java object bt/3

157

This is precisely what happens if the class Counter is available in the
file system at run time, as expected. If, however, it is not present, a
ClassNotFoundException exception is raised, and no side effects occur:
so, no object is actually created, and the Msg is printed on the standard
output. Finally, the ’+++’ is printed as well, according to the Finally

clause. Since the Msg message in this case is the name of the missing class,
the global message printed on the console is obviously Counter+++.

The following set of mini-examples highlight each an aspect of tuProlog
compliance to the ISO standard even when the additional java catch pred-
icate is considered.

Example 1: the handler must be executed maintaining the substitutions
made during the unification process between the exception and the catcher:
then, the Finally part must be executed.

?- java_catch(java_object(’Counter’, [’MyCounter’], c),

[(’java.lang.ClassNotFoundException’(Cause, Message, _),

X is 2+3)], Y is 2+5).

Answer: yes.

Substitutions: Cause/0, Message/’Counter’, X/5, Y/7.

In the tuProlog GUI, the details of the exception are shown in the excep-
tions tab (Figure 7.1, bottom), while the solution and the variable bindings
(substitutions) are shown in the respective tabs (Figure 7.1, top).

Example 2: execution must fail if an exception is raised during the execu-
tion of a goal and no matching java catch/3 is found.

?- java_catch(java_object(’Counter’, [’MyCounter’], c),

[(’java.lang.Exception’(Cause, Message, _), true)], true)).

Answer: no.

In the tuProlog GUI, a failed exception not only results into a ”No” answer
as in other Prolog systems (that answer is shown in the status bar at the
bottom of the window: it also causes the halt message to appear in the
Solutions tab (Figure 7.2).

Example 3: java catch/3 must fail if the handler is false.

?- java_catch(java_object(’Counter’, [’MyCounter’], c),

[(’java.lang.Exception’(Cause, Message, _), false)], true)).

158

Figure 7.1: Catching the Java exceptions of Example 1 in the tuProlog GUI.
Top: the solutions tab. Bottom: details of the exception in the exception tab
(see the Cause variable bound to 0 and the Msg variable bound to ’Counter’;
the other details map onto the anonymous variable).

159

Figure 7.2: A failed exception in the tuProlog GUI: the No answer in the
status bar and the halt message in the Solutions tab.

Answer: no.

Example 4: java catch/3 must fail also if an exception is raised during
the execution of the handler.

?- java_catch(java_object(’Counter’, [’MyCounter’], c),

[(’java.lang.ClassNotFoundException’(Cause, Message, _),

java_object(’Counter’, [’MyCounter’], c))], true).

Answer: no.

Example 5: the Finally must be executed also in case of success of the
goal.

?- java_catch(java_object(’java.util.ArrayList’, [], l),

[E, true], X is 2+3).

Answer: yes.

Substitutions: X/5.

Example 6: the Handler to be executed must be the proper one among
those available in the handlers’ list.

?- java_catch(java_object(’Counter’, [’MyCounter’], c),

[(’java.lang.Exception’(Cause, Message, _), X is 2+3),

(’java.lang.ClassNotFoundException’(Cause, Message, _), Y is 3+5)],

true).

Answer: yes.

Substitutions: Cause/0, Message/’Counter’, Y/8.

160

7.2 Using Prolog from Java: the Java API

The tuProlog Java API provides a complete support for exploiting Prolog
engines from Java: its only requirement is the presence of tuprolog.jar

(or the more complete 2p.jar) in the Java project’s class path. The API
defines a namespace (alice.tuprolog) and classes to enable the definition
in Java of suitable objects representing Prolog entities (terms, atoms, lists,
variables, numbers, etc, but also Prolog engines, libraries and theories), and
use them to submit queries and get the results back in Java, thus effectively
supporting multi-paradigm, multi-language programming.

7.2.1 A Taxonomy of Prolog types in Java

Prolog types are mapped onto suitable Java classes, organized into the tax-
onomy shown in Figure 7.3 and summarized in Table 7.1 on page 136.

Term is the root abstract class, providing common services such as term
unification, term parsing, term copying, etc.; its subclasses distinguish among
untyped terms (structures), numbers, and variables.

Struct objects are characterized by a functor name (a Java string) and
a list of arguments, which are Terms themselves and can be individually
retrieved via the getTerm method.

Atoms are a special case of Struct with no arguments; among these,
the true and false atom constants are used to represent the Java boolean
values. Atoms are also used to map Java chars and strings: when converted
back to Java, however, atoms are always mapped into Java Strings.

Prolog lists are another special case of Struct, built from either two
Terms (the list head and tail) or an array of Terms; by convention, the
default constructor builds the empty list.

The Number subtree includes classes for numeric types, and offers meth-
ods such as intValue, longValue, etc. to retrieve the number value as the
corresponding primitive Java value. As discussed above, in the Prolog-to-

Term

Struct

Number

Var

Int Long

Float Double

Figure 7.3: Prolog entities as a taxonomy of Java classes.

161

Java direction, Prolog integers are always mapped onto Int instances and
Prolog reals onto Double instances, while in the Java-to-Prolog direction
any of the numeric Java types are accepted (including short, byte and
float) for mapping onto Prolog numbers. In particular, Java int and long

values are mapped onto suitable Int and Long instances of the tuProlog
taxonomy, respectively, while byte and short Java types are mapped into
Int instances. Please note that to avoid possible name clashes between
tuProlog types and Java wrapper classes (e.g. alice.tuprolog.Long and
java.lang.Long), it is often necessary to use the fully qualified class name
to denote tuProlog numeric classes.

Var represents Prolog variables, built from a Java string representing the
variable name: as prescribed by the Prolog rules, the name must start either
with a capital letter, or with an underscore. The default constructor builds
the anonymous Prolog variable , mapped onto the Java null value.

Table 7.12 on page 163 shows how to manipulate Prolog entities (vari-
ables, terms, structures, lists, atoms..) from a Java program: variable cre-
ation (lines 1 and 10), list construction (lines 2–4), term construction for
p(a,5) and p(X,Y) (lines 5–6), and term unification (lines 7–14) (the latter
requires a Prolog engine as a mediator, to handle execution contexts and
inner variables).

It is worth noting that, in general, two different Var objects with the
same Java name do not refer to the same Prolog variable, unless they occur
in the same term. So, multiple occurrences of new Var("Y") outside the
same term refer to two distinct variables, as if they were renamed Y1 and
Y2. To refer to the same Prolog variable twice, just use the same Java
identifier (see varY in lines 1, 3, 12) instead of creating a new variable.

The only exception is the case when the homonymous variables occur
in the same term, as in the q(Y,Y) term in line 15: then, they will refer
to the same variable, but only after the term has been resolved. In fact,
new terms are always built in an ‘unresolved’ form, that does not analyze
the term variables: the proof is the false output of line 16. Variables are
taken into consideration later, when the term is either explicitly resolved via
resolveTerm (line 17), or is involved in a match or unify3 operation with
another term (lines 18-19), as proved by the true output of line 20.

7.2.1.1 Further notes about Terms

The Term class is the home of several general-purpose services, used through-
out tuProlog; in particular:

3q(Y,Y) is unified here with the Prolog anonymous variable, so success is granted.

162

import alice.tuprolog.*;

...

1 Var varX = new Var("X"), varY = new Var("Y");

2 Struct atomP = new Struct("p");

3 Struct list = new Struct(atomP, varY); // should be [p|Y]

4 System.out.println(list); // prints the list [p|Y]

5 Struct fact = new Struct("p", new Struct("a"), new Int(5));

6 Struct goal = new Struct("p", varX, new Var("Z"));

7 Prolog engine = new Prolog();

8 boolean res = goal.unify(engine,fact); // should be X/a, Y/5

9 System.out.println(goal); // prints the unified term p(a,5)

10 System.out.println(varX); // prints the variable binding X/a

11 Var varW = new Var("W");

12 res = varW.unify(engine,varY); // should be Z=Y

13 System.out.println(varY); // prints just Y, since it is unbound

14 System.out.println(varW); // prints the variable binding W / Y

15 Struct st = Struct("q", new Var("Y"), new Var("Y")); // unresolved

16 System.out.println(st.getArg(0)==st.getArg(1)); // prints false

17 st.resolveTerm(); // now the term is resolved

18 alternatively: res = st.match(new Struct());

19 alternatively: res = st.unify(engine, new Struct());

20 System.out.println(st.getArg(0)==st.getArg(1)); // prints true

Table 7.12: Manipulating Prolog entities from Java.

• the static parse and createTerm methods provides a quick way to get
a term from its string representation;

• the match and unify methods respectively check for term matching
(but performing no actual unification) and unify the given term with
the provided one; as anticipated above, the latter requires a Prolog ar-
gument, to be used as a mediator during (nested) unification; Instead,
the matching test is performed outside any demonstration context.

• the equals method compares terms with the same semantics of the
method isEqual, which follows the Prolog comparison semantics.

• the getTerm method returns the referred term, following variable bindings—
that is, if the target term is a bound variable, the term bound to the
variable (not the variable itself) is returned.

163

7.2.2 Prolog engines, theories and libraries

The tuProlog engine is made accessible in Java via the Prolog class: so,
adding intelligence to a Java program is as easy as creating Prolog in-
stance(s), configure it (them) as needed, and perform the desired queries.
Query results are expressed as an instance of the SolveInfo helper class.
Table 7.13 reports the public interface of these classes.

A Prolog engine is built by one of Prolog constructors: the default
constructor builds a default engine, with the default set of tuProlog libraries
loaded, and no user theory. In most cases, this is all you need to bring
the power of Logic programming to Java. However, libraries can be loaded
and unloaded dynamically at any time after the engine creation, via the
loadLibrary and unloadLibrary methods: their argument is the name of
the library. If the library is invalid, an exception is raised. A reference to a
loaded library can be obtained via the getLibrary method, which returns
a reference to the abstract Library class. Such a reference can be used to
operate on the library, as discussed below.

The user theory can either be set from scratch via the setTheory method,
which overwrites any previous theory, or be built incrementally, adding new
clauses to the existing theory via the addTheory method: both take a Theory

as their argument. This theory can be built in several ways—from an in-
put stream, from a string, or from a clause list (represented as a Struct

object—see the example in Table 7.15 on page 168 for details). The current
theory can be retrieved via the getTheory method.

Goal resolution is handled via three methods: solve, solveNext, and
hasOpenAlternatives. solve and solveNext take as their argument a
Struct representing the goal, and return a SolveInfo which encapsulates
the result information (success or failure, solution, variable bindings, etc).
An overloaded version of solve takes a string argument representing the
text of the goal, embedding its parsing. Both solve and solveNext raise
the proper exceptions when needed.

7.2.2.1 Further notes about Prolog engines

The Prolog class is the home of tuProlog engines, so some further informa-
tion is opportune about its behavior in particular contexts:

• engines support natively some directives, that can be defined by means
of the :-/1 predicate in theory specification. Directives are used to
specify properties of clauses and engines (solve/1, initialization/1,

164

public class Prolog implements Serializable {
...

public void setTheory(Theory t) throws InvalidTheoryException {...}
public void addTheory(Theory t) throws InvalidTheoryException {...}
public Theory getTheory() {...}
public Library loadLibrary(String name)

throws InvalidLibraryException {...}
public void unloadLibrary(String name)

throws InvalidLibraryException {...}
public Library getLibrary(String name) {...}
public SolveInfo solve(Term goal) {...}
public SolveInfo solve(String goalAsString)

throws MalformedGoalException {...}
public boolean hasOpenAlternatives() {...}
public SolveInfo solveNext() throws NoMoreSolutionException {...}
public boolean isHalted() {...}

}

public class SolveInfo implements Serializable {
public boolean isSuccess() {...}
public Substitution getSubstitution()

throws NoSolutionException {...}
public Term getTerm() throws UnknownVarException {...}
public Term getSolution() throws NoSolutionException {...}

}

Table 7.13: Classes for interacting with tuProlog engines.

165

set prolog flag/1, load library/1, include/1), format and syntax
of read-terms (op/3, char conversion/2).

• engines also support the dynamic definition and management of flags
(or property), used to describe some aspects of libraries and their built-
ins. A flag is identified by a name (an alphanumeric atom), a list of
possible values, a default value and a boolean value specifying if the
flag value can be modified.

• engines are thread-safe.

• engines have no (static) dependencies with each other, can be created
independently on the same Java virtual machine, are very lightweight,
and can be serialized. This is true also for engines with the standard
libraries pre-loaded: obviously, if other libraries are loaded, these must
be serializable, too, for the engine to remain serializable.

7.2.3 Examples

For the sake of concreteness, some examples of use of the tuProlog Java API
are now discussed.

7.2.3.1 Appending lists

In this first example (see Table 7.14, top), a tuProlog engine is asked to solve
a trivial list append goal, provided in textual form.4 The program must be
compiled and executed normally, taking care of including the tuProlog JAR
in the classpath:

javac -cp tuprolog.jar;. Example1.java

java -cp tuprolog.jar;. Example1

The string append([1],[2,3],[1,2,3]) should be displayed.

Table 7.14, bottom shows a variant where all the solutions are displayed,
with their variable bindings. The output should be as follows:

solution: append([],[1,2],[1,2]) - bindings: X/[] Y/[1,2]

solution: append([1],[2],[1,2]) - bindings: X/[1] Y/[2]

solution: append([1,2],[],[1,2]) - bindings: X/[1,2] Y/[]

166

Basic version:

import alice.tuprolog.*;

public class Example1 {

public static void main(String[] args) throws Exception {

Prolog engine = new Prolog();

SolveInfo info = engine.solve("append([1],[2,3],X).");

System.out.println(info.getSolution());

}

}

Variant:

import alice.tuprolog.*;

public class Example2 {

public static void main(String[] args) throws Exception {

Prolog engine = new Prolog();

SolveInfo info = engine.solve("append(X,Y,[1,2]).");

while (info.isSuccess()) {

System.out.println("solution: " + info.getSolution() +

" - bindings: " + info);

if (engine.hasOpenAlternatives()) {

info = engine.solveNext();

} else {

break;

}

}

}

}

Table 7.14: The list appending example.

167

import alice.tuprolog.*;

public class Main {

public static void main(String[] args) throws InvalidTheoryException,

MalformedGoalException, NoSolutionException, NoMoreSolutionException {

Struct clause1 = new Struct(":-", new Struct("p",new Var("X")),

new Struct("q",new Var("X")));

Struct clause2 = new Struct(":-", new Struct("q",new Int(0)),

new Struct("true"));

System.out.println(clause1 + " is a clause? " + clause1.isClause());

System.out.println(clause2 + " is a clause? " + clause2.isClause());

Prolog engine = new Prolog();

Struct clauseList = new Struct(clause1,

new Struct(clause2, new Struct()));

System.out.println(clauseList + " is a list? " + clauseList.isList());

Theory t = new Theory(clauseList);

engine.addTheory(t);

SolveInfo info = engine.solve("p(X).");

while (info.isSuccess()) { % taken from the previous example

System.out.println("solution: " + info.getSolution() +

" - bindings: " + info);

if (engine.hasOpenAlternatives()) {

info = engine.solveNext();

} else {

break;

}

}

}

}

Table 7.15: Building a theory “by hand” from a clause list.

168

7.2.3.2 Exploiting a theory from clause list

In this example (see Table 7.15), a tuProlog theory is built from a clause
list. As in any standard Prolog, a tuProlog clause is just a structure whose
functor is ‘:-’/2. In their turn, facts are expressed as clauses whose body
is the atom true, which can be built as a new Struct("true") (the same
holds for the atom false, of course). Accordingly, clause1 and clause2

represent the p(X):-q(X). and q(0):-true. clauses, respectively. In order
to make the example more explanatory, a couple of print statements have
been added that check whether clause1 and clause2 are actually valid
clauses, via the Term.isClause method.

A clause list is just what it name says: a prolog list whose terms are
clauses. Since lists are just Struct instances built from a term and another
list (possibly the empty list built by the default Struct constructor), the
desired clause list is built by creating a Struct having clause1 as its first
argument, and another list as its second argument: the latter is built by
creating a Struct having clause2 as its first argument, and the empty list
as its second argument. Again, a print statement has been added to show
that the clauseList term is actually a valid list. The clause list is then
used to construct the new theory, as required.

In order to make the example more complete, the engine is finally asked
to solve the p(X). query, which obviously has p(0) as its only solution; the
same exploration cycle presented in Table 7.14 is re-used for this purpose.

7.2.3.3 A console-based Prolog interpreter

As a final example, Table 7.16 shows a console-based Prolog interpreter: first
a tuProlog engine is created and initialized with a theory built from a text
file (whose name is taken from the command line), then a classic read/solve
loop is started.

For each goal read from the standard input, the solve method is invoked:
if multiple solutions exist, the solveNext makes it possible to explore the
open alternatives. The loop ends when the halt predicate is typed in: the
current theory is then saved to file (if any has been specified). Figure 7.4
shows a sample session with this interpreter.

4The append/3 predicate is included in BasicLibrary, which is part of the engine default
configuration.

169

import alice.tuprolog.*;

import java.io.*;

public class ConsoleInterpreter {
public static void main (String args[]) throws Exception {
Prolog engine=new Prolog();

if (args.length>0)

engine.setTheory(new Theory(new FileInputStream(args[0])));

BufferedReader stdin =

new BufferedReader(new InputStreamReader(System.in));

while (true) { // interpreter main loop

String goal;

do { System.out.print("?- "); goal=stdin.readLine();

} while (goal.equals(""));

try {
SolveInfo info = engine.solve(goal);

if (engine.isHalted()) break;

else if (!info.isSuccess()) System.out.println("no.");

else if (!engine.hasOpenAlternatives()) {
System.out.println(info);

} else { // main case

System.out.println(info + " ?");

String answer = stdin.readLine();

while (answer.equals(";") && engine.hasOpenAlternatives()) {
info = engine.solveNext();

if (!info.isSuccess()) { System.out.println("no."); break; }
else {

System.out.println(info + " ?");

answer = stdin.readLine();

} // endif

} // endwhile

if (answer.equals(";") && !engine.hasOpenAlternatives())

System.out.println("no.");

} // end main case

} catch (MalformedGoalException ex) {
System.err.println("syntax error.");

} // end try

} // end main loop

if (args.length>1) {
Theory curTh = engine.getTheory(); // save current theory to file

new FileOutputStream(args[1]).write(curTh.toString().getBytes());

}
}
}

Table 7.16: A simple console-based Prolog interpreter.

170

Figure 7.4: A sample session with the Console-based Interpreter.

7.2.4 Support to relative paths in consulting Prolog sub-files

When developing a Java project that needs to load some Prolog theory, the
typical Java statement to do so is:

Theory theory = new Theory(new FileInputStream("test.pl"));

In this way, however, only the files on the root folder of the Java project
can be found and located: files in any other folder require either an ab-
solute path, or a relative path starting from the project base folder (like
src/prolog-folder/subfile.pl).

This is quite uncomfortable, as it can easily lead either to prevent project
relocation (if absolute paths are used) or obstruct the otherwise-natural idea
to put all the Prolog files in a suitable prolog-files subfolder (due to the
need to refer to the project base folder, which would call for relative paths
like src/prolog-folder/subfile.pl).

To overcome these limitations, tuProlog 2.7 improves the default be-
haviour of the consult predicate by allowing paths to be specified that are
relative to the folder of the Prolog file which is doing the call.

In this way, Prolog files can be placed in a suitable prolog-files sub-
folder, and properly referenced by other files in upper folders easily and
directly. For instance, if the Java project structure is something like:

- src

- prolog-folder/

- main.pl

- java-folder/

...

171

the main.pl file can now include subfile.pl in the prolog-folder sub-
folder via a simple consult(’subfile.pl’) command. In order to exploit
this mechanism from Java, statements like the previous:

Theory theory = new Theory(new FileInputStream("test.pl"));

must be replaced by:

Theory theory = new Theory(":-consult(’test.pl’).");

In this way, the file location process is delegated to the tuProlog engine
instead of depending on Java’s built-in FileInputStream mechanism.

As an aside, this improvement also covers the tuProlog IDE, enabling
the sub-inclusions of Prolog files from other Prolog files in different folders
even in the interactive work sessions. So, for instance, after consulting from
the IDE a prolog file located in someOtherFolder (that is, a folder other
than the current one), you can use consult(someOtherFile) command to
load a file from the current folder.

7.2.5 Registering object bindings

The register function, already discussed in Section 7.1.2.2 on page 144 for
what concerns the Prolog side, is also available on the Java side, where its
‘global’ effect is more natural and coherent with the imperative paradigm
than it is on the Prolog side.

Its purpose is to permanently associate an existing Java object obj to a
Prolog identifier ObjectRef , as follows:

boolean register(Struct ObjectRef, Object obj)

throws InvalidObjectIdException;

where ObjectRef is a ground term (otherwise an InvalidObjectIdException

exception is raised) representing the Java object obj in the context of
JavaLibrary’s predicates. The function returns false if that object is
already registered under a different ObjectRef .

As an example, let us suppose that we want to permanently bind the
Prolog atom stdout to the Java (static) object System.out, so that Java-
based printing can be done from the Prolog side without having to retrieve
and re-bind the out object every time, as we did in Table 7.2 on page 141
(reported again below for convenience):

172

class(’java.lang.System’) . out <- get(Out),

Out <- println(...),

To bind System.out permanently to stdout (within the scope of the tuProlog
engine engine), we can register it as follows:

Prolog engine = new Prolog();

Library lib = engine.getLibrary("alice.tuprolog.lib.JavaLibrary");

((JavaLibrary)lib).register(new Struct("stdout"), System.out);

An explicit downcast to JavaLibrary is needed to convert the returned
reference type Library, since register is defined in JavaLibrary only.
Now, a Prolog theory loaded into this engine can contain a phrase like:

stdout <- println(’What a nice message!’)

which uses stdout directly as a target for the println method.
A small yet complete sample program is shown in Table 7.17, where the

theory loaded into the engine prints the standard greetings message.

import alice.tuprolog.*;

import alice.tuprolog.lib.*;

public class StdoutExample {

public static void main(String[] args) throws Exception {

Prolog engine = new Prolog();

Library lib = engine.getLibrary("alice.tuprolog.lib.JavaLibrary");

((JavaLibrary)lib).register(new Struct("stdout"), System.out);

engine.setTheory(new Theory(

":-solve(go). \n go:- stdout <- println(’hello!’)."));

}

}

Table 7.17: A program registering stdout for System.out. As an alternative
to getLibrary, loadLibrary could have been used—if the library is already
loaded, its behavior is identical to getLibrary’s. Also, the fully qualified
class name "alice.tuprolog.lib.JavaLibrary" is needed in getLibrary

only because JavaLibrary does not define a short library name (see Section
7.3.4 for details): otherwise, the shorter name could have been used.

173

7.2.6 Capturing the Prolog output in Java

If a tuProlog engine is used in a Java application, the output performed by
Prolog write predicates (more generally, of any predicate writing on the
Prolog console) is not available in Java: printed messages are not captured,
nor are they retrievable by any of the tuProlog Java API methods. The only
way to ‘capture’ somehow the output of the Prolog engine is to write it to a
file or store it in a Prolog term—just two variants of the same inconvenience.

Yet, this feature can be added in a non-intrusive way, thanks to tuProlog’s
extensible architecture, by simply overriding the onOutput method used
internally by the engine to handle the write requests.5 All is needed is
to redefine this method so as to capture the output message and store it
conveniently—for instance, into a suitable String of the Java application
(here, finalResult), as follows:

engine.addOutputListener(new OutputListener() {

@Override

public void onOutput(OutputEvent e) {

finalResult += e.getMsg();

}

});

This elegant approach does not modify the tuProlog code in any way: it just
adds listener to an existing event, extending the service non-intrusively. A
full example of this technique is reported in Table 7.18 on page 175, together
with the corresponding build process and execution.

7.3 Augmenting Prolog via Java:
developing new libraries

So far, the two first dimensions of tuProlog’s support to multi-paradigm,
multi-language programming have been explored, that enable a language
(and the corresponding paradigm) to be used from the other. The two
further dimensions concerns augmenting the language instead—that is, ex-
ploiting a language (and a paradigm) to increase the other.

In this section the focus is on augmenting Prolog from Java, exploiting
the latter6 to increase the first by developing new tuProlog libraries; the

5This approach was originally suggested by Josh Guzman in the tuProlog users’ forum.
6Other languages may be used indirectly, via JNI (JavaNative Interface

174

import alice.tuprolog.*;

import alice.tuprolog.lib.*;

import alice.tuprolog.event.*;

public class OnOutputExample {

static String finalResult = "";

public static void main(String[] args) throws Exception {

Prolog engine = new Prolog();

engine.addOutputListener(new OutputListener() {

@Override

public void onOutput(OutputEvent e) {

finalResult += e.getMsg();

}

});

Term goal = Term.createTerm("write(’Hello world!’)");

SolveInfo res = engine.solve(goal);

res = engine.solve("write(’Hello everybody!’), nl.");

System.out.println("OUTPUT: " + finalResult);

}

}

Table 7.18: Capturing the Prolog output from Java: a complete example.

next Section (7.4) will focus on the opposite direction, exploiting Prolog to
augment Java via the so-called P@J framework.

Moreover, although tuProlog libraries are expressed in Java, they are
not required to be fully implemented in this language. In fact, Java-only
libraries are the simplest case, but hybrid Java + Prolog libraries are also
possible, where a Prolog theory is embedded into a Java string so that the
two parts cooperate to define the overall library behavior. This opens further
interesting perspectives, that will be discussed below.

175

7.3.1 Syntactic conventions

Each library must extend the base abstract class alice.tuprolog.Library
and define new predicates and/or evaluable functors and/or directives in the
form of methods, following a simple signature convention.
Predicates must adhere to the signature:

public boolean <pred name > <N >(

<? extends Term> arg1, ..., <? extends Term> argN)

while evaluable functors must follow the form:

public Term <eval funct name > <N >(

<? extends Term> arg1, ..., <? extends Term> argN)

and directives must be provided with the signature:

public void <dir name > <N >(

<? extends Term> arg1, ..., <? extends Term> argN)

where arg1, ... argN are Terms7 that represent the actual arguments passed
to the predicate (functor, directive).

Table 7.19 shows a library defining an evaluable functor (sum/2) and
two predicates (println/1, invert/2). The Java method sum 2, which
implements the evaluable functor sum/2, is passed two Number terms (5 and
6) which are then used (via getTerm) to retrieve the two (float) arguments
to be summed. In the same way, method println 1, which implements the
predicate println/1, receives N as arg, and retrieves its actual value via
getTerm: since this is a predicate, a boolean value is returned, representing
success or failure (true = success in this case). Analogous considerations
hold for invert/2, whose input argument is first type-checked to handle
variables appropriately (the related bound term must be retrieved), then
the input term is scanned to build the output string, which is finally unified
with the output variable.

A test Java program, which loads this library and tests its predicates,
is shown in Table 7.20. The program creates the Prolog engine, loads
TestLibrary (checking that it was actually loaded), defines a theory con-
taining the Prolog test code and sets it into the engine: then, the three test
goals are solved in sequence. The printed output is reported in the bottom

7Please refer to Table 7.3 on page 161 for the full Term taxonomy.

176

import alice.tuprolog.*;

public class TestLibrary extends Library {

// functor sum(A,B)

public Term sum 2(Number arg0, Number arg1){
float n0 = arg0.floatValue();

float n1 = arg1.floatValue();

return new Float(n0+n1);

}

// predicate println(Message)

public boolean println 1(Term arg){
System.out.println(arg);

return true;

}

// predicate invert(StringIn,StringOut)

public boolean invert 2(Term in, Var out){
String s1 = null, s2 = "";

if (in instanceof Var) s1 = in.getTerm().toString();

else s1 = in.toString();

for(int i=0; i<s1.length(); i++){
char ch = s1.charAt(i);

if (ch==’\’’) continue;

if (Character.isUpperCase(ch))

s2 += Character.toLowerCase(ch);

else

s2 += Character.toUpperCase(ch);

}
return out.unify(getEngine(),new Struct(s2));

}

Table 7.19: Definition of a tuProlog library in Java.

177

part of the Table. The Name / Value format is the tuProlog’s default for
variables, and is Name is composed of the Prolog variable name (N, S, etc.)
and of a unique internal identifier. As expected, N is bound to 11, S to abcd,
the X and Z pair to ab/’AB’, bc/’BC’ and uk/’UK’, respectively.

Alternatively, the same theory can be loaded from the Prolog side, via
the load library predicate (Figure 7.5, top) or via the library manager tool
in the GUI (Figure 7.6).

Please note that library loading from the Prolog side requires a clear
understanding of Java loading issues discussed in Section 7.3.3: please read
that Section carefully, or the example will never work.

7.3.1.1 Capturing exceptions raised in libraries

Unlike the JavaLibrary case above, where the exceptions possibly raised
during a call to some method call can be perceived and caught via the
java catch/3 predicate, the exceptions possibly raised inside a tuProlog
library cannot be caught at all, since they have nothing to do with the
JavaLibrary filter. So, if any such exception occurs inside a library, the
corresponding predicate simply fails.

7.3.1.2 Capturing the Java output in Prolog

In these cases, the Java output is not captured by the tuProlog GUI, but goes
to the Java console—that is, the prompt from which the GUI was launched
(Figure 7.5, bottom), because the code in println 2 explicitly states to write
to System.out. Rather obviously, if the CUIConsole is used instead of the
GUI, the output goes to the same terminal, and the “strange” effect above
does not occur (Figure 7.7).

7.3.1.3 Naming issues

When developing libraries, two naming issues may arise:

1. the name of the predicate, functor or directive should contain a symbol
that cannot legally appear in a Java method’s name;

2. a predicate and a directive with the same Prolog signature should be
defined, but Java would not be able to distinguish method signatures
differing for the return type only.

To overcome these issues, a synonym map must be set up, that maps the
desired Prolog names onto legal Java method names, bypassing the standard

178

import alice.tuprolog.*;

import alice.tuprolog.lib.*;

public class TestLibraryMain {
public static void main(String[] args) throws Exception {
Prolog engine = new Prolog();

Library lib1 = engine.loadLibrary("TestLibrary");

System.out.println(

"Lib1 " + (lib1==null ? "NOT " : " ") + "LOADED");

Theory testTheory = new Theory(

"test1 :- N is sum(5,6), println(N).\n" +

"test2 :- invert(’ABCD’,S), println(S).\n" +

"test3 :- name(X), println(X)," +

"invert(X,Z), println(Z), fail.\n" +

"name(ab).\n name(bc).\n name(uk).\n");
engine.setTheory(testTheory);

SolveInfo res = engine.solve("test1.");

res = engine.solve("test2.");

res = engine.solve("test3.");

}
}

OUTPUT PRINTED:
Lib1 LOADED

N e2 / 11.0

S e2 / abcd

X e11 / ab

Z e12 / ’AB’

X e13 / bc

Z e14 / ’BC’

X e15 / uk

Z e17 / ’UK’

Table 7.20: A test program for the library defined in Table 7.19 (top) and
the corresponding output (bottom).

179

Figure 7.5: Loading a library from the Prolog side in the GUI (top) and its
output (bottom). Be sure to read the loading issues in Section 7.3.3, or the
example will not work.

180

Figure 7.6: Loading a library from the Prolog side via the Library Manager
icon in the tuProlog GUI. The loading issues in Section 7.3.3 still apply.
Please note that the browse/save buttons in the dialog are not to be used to
load/save libraries, but only to load/save tuProlog preferences in the form
of .2p files.

181

Figure 7.7: Loading a library from the Prolog side on the CUIConsole: the
output here is in the same terminal, as expected. Again, be sure to read the
loading issues in Section 7.3.3, or the example will not work.

naming convention. This map must have the form of an array of String

arrays, and be returned by the ad hoc getSynonymMap method (abstract in
the base Library class). For instance, an evaluable functor +, which cannot
appear in a Java method name, could be implemented by a defining a Java
method with any name (say, add) and then map it onto the Prolog name by
adding the array {"+", "add", "functor"} to the synonym map.

Libraries can also inherit from each other: a library can well extend a
user library instead of the base Library, as in the case of the HybridLibrary
discussed in the next Section.

7.3.2 Hybrid Java+Prolog libraries

Since Java does not support non-determinism, a Java-only library is inher-
ently deterministic: however, non-determinism can be achieved via hybrid
Java + Prolog libraries, adding a Prolog layer on top of the Java layer.

To this end, a library can include a new piece of Prolog theory, embedded
into the getTheory method. This method returns a string8 (empty by de-
fault) containing the desired Prolog theory, and is automatically called when
the library is loaded, so as to add the theory to the engine’s configuration.

Table 7.21 shows a hybrid library where the theory in getTheory adds to
TestLibrary the non-deterministic predicate myprint/1, whose (potentially
infinite) solutions alternately print the argument in upper and lowercase.

8In principle, only the external representation of this theory is constrained to the
String form, the internal implementation being up to the developer; yet, using a Java
String for wrapping the Prolog code guarantees self-containment while loading libraries
through remote mechanisms such as RMI, and therefore constitutes the suggested form.

182

public class HybridLibrary extends TestLibrary {
public String getTheory(){
return "myprint(X) :- println(X).\n" +

"myprint(X) :- invert(X,Y), myprint(Y).\n";
}
}

import alice.tuprolog.*;

import alice.tuprolog.lib.*;

public class HybridLibraryMain {
public static void main(String[] args) throws Exception {
Prolog engine = new Prolog();

Library lib2 = engine.loadLibrary("HybridLibrary");

SolveInfo res = engine.solve("myprint(henry).");

int count=0;

while (engine.hasOpenAlternatives() && count < 5){
count++;

res = engine.solveNext();

}

OUTPUT PRINTED:
Lib2 LOADED

X e1 / henry

X e5 / yrneh

X e9 / henry

X e11 / yrneh

X e13 / henry

X e15 / yrneh

Table 7.21: A hybrid (mixed) Java + Prolog library (top) and the corre-
sponding test program (bottom).

183

7.3.3 Library loading issues

As shown in the above examples, a library can be loaded (and unloaded)
dynamically into a running engine via Java, by means of the loadLibrary

(unloadLibrary) methods; but it can also be loaded (unloaded) from Pro-
log, via the load library/1 (unload library/1) predicate.

Effective from tuProlog 2.6, an enhanced class loading mechanism – a
custom extension to the URLClassLoader – has been implemented, which
overcomes the limitations of the default java class loader that affected the
previous tuProlog versions.

In fact, until tuProlog 2.5, starting the tuProlog GUI by double-clicking
2p.jar (or by the equivalent java -jar command) prevented libraries from
being found and loaded from Prolog via the load library/1 predicate or
via the Library Manager in the GUI, except for the standard libraries packed
into the tuProlog JAR itself: this was due to the Java class loader, which
would refuse to load classes outside the runnable JAR from which the ap-
plication was started (or from the path specified in its inner manifest file).9

The suggested workaround was to avoid launching tuProlog as a runnable
JAR (or by the equivalent java -jar command), in favour of a standard
execution via the java interpreter, as follows:

java -cp MyLibrary.jar:2p.jar alice.tuprologx.ide.GUILauncher

java -cp MyLibrary.jar:2p.jar alice.tuprologx.ide.CUIConsole

This approach allowed the -cp option to be taken into account by the Java
class loader, making it possible to add a specific reference to the library to
be loaded (e.g. MyLibrary.jar above), preventing the failure.

In tuProlog 2.6, instead, the new load library/2 predicate has been
added, which takes the desired path list as an extra argument, making it
possible to load libraries from virtually anywhere in the file system:

?- load library(’TestLibrary’,

[’C:/Users/Johnny/Desktop/TestProject/test’,

’D:/MyLibrary.jar’]).

Clearly, both the ’/’ and the \ file separators are supported, based on the
execution platform.

The Library Manager in the tuProlog GUI, shown in Section 3.1.4, also
takes into account such paths: in fact, if a library file is located in the

9Specifying the -cp option would not work, since Java ignores it in favor of the JAR
manifest properties, leading to a runtime failure.

184

file system via the Browse button, the corresponding path is automatically
added to the path list so that the library can be successfully loaded.

As a last remark, the enhanced class loading mechanism implemented in
tuProlog 2.6 also applies to the proper JavaLibrary predicates, which now
not only search for class files in all the paths specified via the set classpath

predicates (instead of being limited to the tuProlog JAR), but also accept a
path list as an optional extra argument: more on this in Section

7.3.4 Library Name

The concept of library name is introduced in tuProlog to separate the phys-
ical class name of a library from its logical name, both for clarity – the
library name can be shorter and more meaningful – and to support multi-
ple versions of the same library, enabling the dynamic upgrade of a library
implementation.

By default, the library name is identical to the class name: however,
a library can specify a different name by overriding the getName method.
Obviously, the full class name is always needed when loading the library,
while the library name is used by getLibrary (and similar predicates) to
return references to already-loaded libraries.

As an example, in Table 7.22 the NewStringLibrary class provides an
alternate implementation of StringLibrary: this is why it getName is re-
defined so as to return StringLibrary as the NewStringLibrary library
name.

7.4 Augmenting Java via Prolog:
the P@J framework

The last dimensions of tuProlog’s support to multi-paradigm, multi-language
programming is still a form of augmenting a language (that is, exploiting a
language and a paradigm to increase the other)—in this case, augmenting
Java from Prolog, exploiting the so-called P@J framework [8].

This approach makes it possible to “inline intelligence” into Java code,
enabling Prolog to be used for implementing Java (abstract) methods, via
Java reflection and suitable annotations. The basic idea is that the methods
to be implemented in Prolog are declared abstract from the Java syn-
tax viewpoint10, so that the Java compiler does not expect to find any

10Of course, the corresponding class must be syntactically qualified abstract, too.

185

public class StringLibrary extends Library {
public boolean to lower case 2(Term source, Term dest){

String st = source.toString().toLowerCase();

return unify(dest, new Struct(st));

}
...

// the inherited getName returns "StringLibrary"

...

}

public class NewStringLibrary extends Library {
public String getName(){ return "StringLibrary"; }
...

}

Table 7.22: Defining a new library with the same name as another.

implementation, while annotating them with the Prolog clauses that pro-
vide the actual implementations. On the user side, the factory method
PJ.newInstance will be used to automatically create a Java implementa-
tion of this method, which interacts with the Prolog engine in a totally
transparent way.

The technique relies on advanced features of Java such generic types,
wildcards, and type inference, as well as reflection to “put things together”;
for this reason, some syntax conventions are required for method signatures:

• the Prolog predicate name must be identical to the Java method name;

• the argument types must be explicitly declared each with the corre-
sponding bounding, and their names must start with $;

• the argument position in the Java method signature must reflect their
role as input or output arguments in the Prolog predicate: the first
are to be put in the argument list, and the latter in the return type.

The last requirement is necessary to bridge between the Prolog predicate
syntax, where both input and output arguments are in the argument list

186

(with nothing explicitly qualifying these roles, according to the declarative
nature of the language), and the Java method syntax, where the only output
argument is not in the argument list, but is “returned from” the method.

7.4.1 Term taxonomy

Here, too, a suitable taxonomy is needed to map the relevant Prolog types
(term, atom, number, list, variable, etc) in Java; however, while the domain
to represent is the same as above (Section), the requirements due to type
inference and strong type checking made it necessary to define one further,
ad hoc taxonomy as the base of the annotation layer.

The new hierarchy exploits the basic types in Figure 7.3 on page 161
as its building bricks, and builds a new layer on top. The new root is the
abstract class Term<X>, whose definition exploits a recursive pattern to reify
(represent) the type of the actual term content:

abstract class Term<X extends Term<?>> {..}

Accordingly, the term subclasses are defined as:

class Atom extends Term<Atom> {..}

class Int extends Term<Int> {..}

class Double extends Term<Double> {..}

class List<X extends Term<?>> extends Term<List<X>> {..}

...

where, clearly, Term<Int> is used for a term containing an Int, Term<Double>
for a term containing a Double, Term<List<Int>> for a term containing a
List<Int>, etc.

Variables are a notable exception, because they must be able to contain
values of the above types: for this reason, Var<X> is not defined as a subtype
of Term<Var<X>>, but directly of Term<X>.

class Var<X extends Term<?>> extends Term<X> {..}

As a consequence, both types X and Var<X> derive from the common ancestor
Term¡X¿, which makes it possible to represent method arguments that may
be a logical input or output—i.e., that must accept both a value (a term of
type X) or a variable (a term of type Var(X)).

Thanks to this approach, a method definition like the following:

boolean length(Term<? extends List<?>> list, Term<Int> size)

187

can be read as follows:

• list is a term containing any list, and size is an integer;

• both arguments can be either input or output.

The term hierarchy is completed by the Compound term family, which en-
ables the definition of compound terms of any arity by means of a list-like
approach—that is, starting from the empty compound term Nil and build-
ing bigger compounds with the Cons class constructor. However, shortcut
classes Compound1, Compound2 and Compound3 are provided for the user con-
venience to specify the most common terms of 1, 2 or 3 arguments:

public abstract class Compound<X extends Compound<?>>

extends Term<X> {..}

public class Cons<H extends Term<?>, R extends Compound<?>>

extends Compound<Cons<H,R>> implements Iterable<Term<?>>{..}

public class Nil extends Compound<Nil> {..}

public class Compound1<X1 extends Term<?>>

extends Cons<X1,Nil> {..}

public class Compound2<X1 extends Term<?>, X2 extends Term<?>>

extends Cons<X1,Cons<X2,Nil>> {..}

public class Compound3<X1 extends Term<?>, X2 extends Term<?>,

X3 extends Term<?>>

extends Cons<X1,Cons<X2,Cons<X3,Nil>>> {..}

7.4.2 Examples

As an example, Table 7.23 shows a Java class Perm with the permutation

method implemented in Prolog. The Java method declaration specifies that
there is one input argument and one output argument: the first ($X) is a
List<Int> (or a covariant type), the second ($Y) is an Iterable over a
List<Int> (or a covariant type). The Iterable specification is needed to
iterate over all solutions: if only the first solution is needed, $Y could have
been used instead of Iterable<$Y>.

188

Moreover, since arguments are declared in the order ($X), ($Y) in the Java
method signature, they will be mapped in this order on the Prolog predicate
arguments: so ($X) will map onto the first argument of permutation/2, and
($Y) on the second argument.

In the client program, the Perm instance p is created indirectly via
the PJ.newInstance factory method, whose argument is the corresponding
Class meta-class, Perm.class. Then, the p object can be used normally,
like any other Java object: here it computes all the permutations of a given
list of integers (built from an array, just to play with types), which is then
iterated over by a for-each loop that prints every result. The actual type for
both $X and $Y, List<Int>, is inferred automatically by the P@J runtime.

Two further examples are shown in Table 7.24 and Table 7.25, respec-
tively. The first operates on lists, and finally generates (and prints) five
“lists of anything” of 1,2,3,4,5 arguments; the second computes the path
between two given nodes in a graph. In both cases, Prolog is delegated
the reasoning part, while Java is exploited as the front-end to the user.
Technically, attention is required to distinguish Java lists (i.e., instances of
java.util.List and its subclasses) from P@J List, which handles terms
like Term<X>; moreover, the example in Table shows the inner structure of
compounds.

For completeness, Table Table 7.26 shows a last, more complex example,
where the Prolog code specifies a parser for arithmetic expressions.

189

import alice.tuprologx.pj.annotations.*;

import alice.tuprologx.pj.engine.*;

import alice.tuprologx.pj.model.*;

import alice.tuprologx.pj.meta.*;

import java.util.List;

import java.util.ArrayList;

A Java class augmented via Prolog

abstract class Perm{

@PrologMethod (clauses = {

"permutation([],[])." ,

"permutation(U,[X|V]):-remove(U,X,Z),permutation(Z,V)." ,

"remove([X|T],X,T)." ,

"remove([X|U],E,[X|V]):-remove(U,E,V)."

}

)

public abstract < $X extends List<Int>, $Y extends List<Int> >

Iterable<$Y> permutation($X list);

}

A sample client class

public class PJexample {

public static void main(String[] args) throws Exception {

java.util.Collection<Integer> v = java.util.Arrays.asList(1,2,3);

Perm p=PJ.newInstance(Perm.class);

for (List<Int> list : p.permutation(new List<Int>(v))) {

System.out.println(list.toJava());

}

}

}

Output printed:

[1, 2, 3]

[1, 3, 2]

[2, 1, 3]

[2, 3, 1]

[3, 1, 2]

[3, 2, 1]

Table 7.23: A Java class exploiting Prolog for implementing an abstract
method (top) and a client using it (bottom). Note that the Arrays.asList

method exploits the Java shortcut syntax for varargs. To run the example,
the javassist.jar library, used by the P@J runtime, must be in the class
path: E:>java -cp .;2p.jar;javassist.jar PJexample

190

import alice.tuprologx.pj.annotations.*;

import alice.tuprologx.pj.engine.*;

import alice.tuprologx.pj.model.*;

import alice.tuprologx.pj.meta.*;

Another Java class augmented via Prolog

@PrologClass(

clauses = {"size(X,Y) :- length(X,Y)."}

)

public abstract class PJLength {

@PrologMethod abstract <$Ls extends List<?>, $Ln extends Int>

Boolean size($Ls expr, $Ln rest);

@PrologMethod abstract <$Ls extends List<?>, $Ln extends Int>

$Ln size($Ls expr);

@PrologMethod abstract <$Ls extends List<?>, $Ln extends Int>

$Ls size($Ln expr);

@PrologMethod abstract <$Ls extends List<?>, $Ln extends Int>

Iterable<Compound2<$Ls,$Ln>> size();

public static void main(String[] args) throws Exception {

PJLength pjl = PJ.newInstance(PJLength.class);

java.util.List<?> v = java.util.Arrays.asList(12,"ok",false);

List<?> list = new List<Term<?>>(v);

Boolean b = pjl.size(list, 3); // true

Int i = pjl.size(list); // length is 3

List<?> l = pjl.size(3); // produces [_,_,_]

int cont = 0;

for (Term<?> t : pjl.size()) { // [],[_],...,[_,_,_,_,_]

System.out.println(t);

if (cont++ == 5) break;

}

}

}

Output printed:

Compound:’size’(List[],Int(0))

Compound:’size’(List[Var(_)],Int(1))

Compound:’size’(List[Var(_), Var(_)],Int(2))

Compound:’size’(List[Var(_), Var(_), Var(_)],Int(3))

Compound:’size’(List[Var(_), Var(_), Var(_), Var(_)],Int(4))

Compound:’size’(List[Var(_), Var(_), Var(_), Var(_), Var(_)],Int(5))

Table 7.24: Another Java class exploiting Prolog for method implementa-
tion. The length/2 predicate used in the clauses section on top is part of
the standard ISO list management predicates.

191

import alice.tuprologx.pj.annotations.*;

import alice.tuprologx.pj.engine.*;

import alice.tuprologx.pj.model.*;

import alice.tuprologx.pj.meta.*;

Another Java class augmented via Prolog

@PrologClass (

clauses={"arc(a,b)." , "arc(a,d)." , "arc(b,e)." , "arc(d,g).",

"arc(g,h)." , "arc(e,f)." , "arc(f,i)." , "arc(e,h)."}

)

public abstract class PJPath {

@PrologMethod (

clauses = { "path(X,X,[X]).",

"path(X,Y,[X|Q]):-arc(X,Z),path(Z,Y,Q)."}

)

public abstract <$X,$Y,$P> Iterable<$P> path($X from, $Y to);

public static void main(String[] s) throws Exception {

PJPath pjp = PJ.newInstance(PJPath.class);

for (Object solution : pjp.path(new Atom("a"), new Var<Atom>("X"))) {

System.out.println(solution);

}

}

}

Output printed:

List[Atom(a)]

List[Atom(a), Atom(b)]

List[Atom(a), Atom(b), Atom(e)]

List[Atom(a), Atom(b), Atom(e), Atom(f)]

List[Atom(a), Atom(b), Atom(e), Atom(f), Atom(i)]

List[Atom(a), Atom(b), Atom(e), Atom(h)]

List[Atom(a), Atom(d)]

List[Atom(a), Atom(d), Atom(g)]

List[Atom(a), Atom(d), Atom(g), Atom(h)]

Table 7.25: Another Java class exploiting Prolog for method implementa-
tion.

192

import alice.tuprologx.pj.annotations.*;

import alice.tuprologx.pj.engine.*;

import alice.tuprologx.pj.model.*;

import alice.tuprologx.pj.meta.*;

@PrologClass

public abstract class PJParser {

@PrologMethod (clauses={"expr(L,R):-term(L,R).",

"expr(L,R):-term(L,[’+’|R2]), expr(R2,R).",

"expr(L,R):-term(L,[’-’|R2]), expr(R2,R)."})

public abstract <$E extends List<?>, $R extends List<?>>

Boolean expr($E expr, $R rest);

@PrologMethod (clauses={"term(L,R):-fact(L,R).",

"term(L,R):-fact(L,[’*’|R2]), term(R2,R).",

"term(L,R):-fact(L,[’/’|R2]), term(R2,R)."})

public abstract <$T extends List<?>, $R extends List<?>>

Boolean term($T term, $R rest);

@PrologMethod (clauses={"fact(L,R):-num(L,R).",

"fact([’(’ | E],R):-expr(E,[’)’|R])."})

public abstract <$F extends List<?>, $R extends List<?>>

Boolean fact($F fact, $R rest);

@PrologMethod (clauses={"num([L|R],R):-num_atom(_,L)."})

public abstract <$N extends List<?>, $R extends List<?>>

Boolean num($N num, $R rest);

public static void main(String[] args) throws Exception {

PJParser ep = PJ.newInstance(PJParser.class);

String tokenizer_regexp =

"(?<!^)(\\b|(?=\\()|(?=\\))|(?=\\-)|(?=\\+)|(?=\\/)|(?=*))";

List<Atom> exp1 = new Atom("12+(3-4)").split(tokenizer_regexp);

List<Atom> exp2 = new Atom("(12+(3-4))").split(tokenizer_regexp);

System.out.println(ep.expr(exp1, List.NIL)); // 12+(3*4) expression ?

System.out.println(ep.fact(exp1, List.NIL)); // 12+(3*4) factor ?

System.out.println(ep.expr(exp2, List.NIL)); // (12+(3*4)) expression ?

System.out.println(ep.fact(exp2, List.NIL)); // (12+(3*4)) factor ?

}

}

Table 7.26: A parser for arithmetic expressions encoded in Prolog inside an
annotated Java program. The output prints true, false, true, true in this
order, since 12+(3*4) is an expression but not a factor, while (12+(3*4)) is
both an expression and a factor.

193

Chapter 8

Multi-paradigm program-
ming in Prolog and .NET

tuProlog.NET now provides the user with the same features as the Java
version, extending and specializing the multi-paradigm, multi-language ex-
perience to the plethora of languages available onto the Microsoft .NET
platform. In this Chapter, the impact of such change is discussed, both
in terms of specific conceptual concepts (namely, language conventions to
handle multiple languages) and new/specialized libraries and predicates to
be used for language interaction.

Since the current status of tuProlog.NET depends a) on its past history
and b) on the IKVM tool [1], the two following Sections summarize its
evolution from version 2.1 and the basics of IKVM translation, respectively.

While their reading is recommended to everyone, the reader wishing only
to exploit tuProlog.NET in its current version can safely bypass them and
jump directly to Section 8.3.

8.1 A bit of history

8.1.1 tuProlog 2.1 and CSharpLibrary

tuProlog.NET appeared as a usable tool for the first time in April 2007,
with the .NET conversion of tuProlog 2.1; an earlier, experimental version
had been made with version 2.0, but was never officially published.

tuProlog.NET 2.1 run on Microsoft .NET 2.0 and on Mono 1.2.51, and
was a complete rewriting in C# of the original Java code: the executable

1The MONO version required a source tuning for the TheoryManager.find method.

194

became a .NET exe file, and all the libraries became .NET dll assemblies.
The Java-based, key feature to multi-paradigm-programming, JavaLi-

brary, was replaced by a corresponding CSharpLibrary, which provided the
very same features, except for a few syntactic changes:

• any java xxx predicate was renamed as csharp xxx .

• C# objects defined in other namespaces than System required that
the new namespace be explicitly passed to the predicate creating the
object: so, java object/3 became csharp object/4:
csharp object(AssemblyName, ClassName, ArgumentList, ObjRef)

Moreover, the assembly containing the definition of the object type
must be in the same folder as the alice-tuProlog.dll file.

• an ad hoc predicate was added for array creation, instead of using
the standard csharp object/3-/4 resulting from the direct conver-
sion of JavaLibrary predicates: csharp array(AssemblyName, Type,

Length, ObjRef)

An annoying limitation concerned the loading of user-defined libraries
(and theories), which had to be in the same folder as the tuProlog (IDE.exe
or CUIConsole.exe) executable.

From the developers’ viewpoint, using tuProlog classes in a Visual Studio
project required a reference to the alice-tuProlog.dll assembly be added
to the project, and the tuProlog namespace be imported in the usual C#
fashion (e.g. using tuProlog;).

8.1.2 tuProlog 2.1.3: CSharpLibrary + exceptions

As a further step towards the convergence of the .NET and Java versions,
the “tuProlog 3” project –later renamed as 2.1.3 – was started to add the ex-
ceptions support, being developed for the Java version, to the .NET version,
too. However, this version was never officially released, because of the quasi-
simultaneous development of tuProlog 2.2, whose CLILibrary could provide
a much larger interest from the multi-paradigm, multi-language viewpoint.

8.1.3 tuProlog 2.2 and CLILibrary

Version 2.22 was a milestone in tuProlog.NET history, as it generalized
CSharpLibrary to enable multi-language programming with virtually any

2Unfortunately, version numbering for .NET was incoherent with the Java version at
that time: in Java, 2.2 was the version that introduced the exception support, which

195

language available on the .NET platform, rather than C# only (unfortu-
nately, it lacked exception support, due to the race between the two quasi-
simultaneous projects).

To this end, the concept of Language Convention was introduced to
encapsulate the language-specific aspects, so that a single library – re-
named CLILibrary instead of CSharpLibrary – could handle any language.
Each convention contains the syntax conversion operations and the post-
compilation transformations required for a given language. Conventions
were developed for C#, J#, VisualBasic.NET, F#, Eiffel.NET and Iron-
PythonStudio.

Following the generalization renaming of CSharpLibrary as CLILibrary,
a few syntactic changes were also made:

• any csharp xxx predicate of CSharpLibrary was renamed here as
cli xxx ; this applies both to predicates derived from the JavaLibrary
(of the form java xxx) and to predicates added by CSharpLibrary,
like csharp array/4;

• to create objects bound to a particular Convention, the cli object/5

predicate was introduced whose first argument specifies the convention
to be used:
cli object(Convention, AssemblyName, ClassName,

ArgumentList, ObjRef)

• furthermore, for those .NET programming languages whose construc-
tor function is not constrained to coincide with the class name, and
therefore require such a name to be explicitly specified on object cre-
ation, the cli object/6 predicate was introduced:
cli object(Convention, AssemblyName, ClassName,

ContructorName , ArgumentList, ObjRef)

• two convention handling predicates, also usable as directives, were
introduces to load/unload conventions to/from a Prolog theory:
load convention(Assembly, ConventionName, ConventionAtom)

unload convention(ConventionAtom).

From the developers’ viewpoint, the new aspect is how to define new
conventions: this is done by starting a new project (class library), importing

was absent in 2.2 for .NET because the development tuProlog 2.1.3, where exceptions
were being added, occurred quasi-simultaneously, but not in time for the two projects to
converge. In addition, this version was never tested on Mono.

196

the alice-tuprolog.dll reference and implement a new class extending
tuProlog.Convention in the tuProlog.Conventions namespace.

The dll generated by the compilation must then be moved to the main
project compiling folder.

8.2 IKVM Basics

IKVM.NET [1] is basically a .NET implementation of Java (language, in-
frastructure, tools) enriched with special tools for Java/.NET conversion.
Its distribution, which adheres to the zlib open source license, includes:

• a .NET implementation of a Java Virtual Machine;

• a Java class library, based on OpenJDK, re-implemented in .NET;

• tools for Java/.NET inter-operability—in particular, the ikvmc byte-
code translator that converts Java bytecode to Microsoft .NET Com-
mon Intermediate Language (CIL).

Both Microsoft .NET 2.0 and Mono platforms 2.0 are supported, both for
x86 and x64 architectures. If necessary, the source pack is also available.

Debugging is also very well supported: if the Java sources are available,
proper information can be generated3 that enable Microsoft Visual Studio
to keep the .NET and and Java sources in sync, following the program
execution on the Java source, too, as well as enabling breakpoints, variable
inspection, etc.

8.2.1 Dynamic vs. Static modality

IKVM can work in two modalities. In the dynamic modality, Java appli-
cations are converted in .NET on-the-fly and immediately executed; in the
static modality, instead, Java applications (or libraries) are translated into
a .NET assembly, to be used to develop a .NET native application.

The dynamic modality is supported by the ikvm tool, which is analogous
to Java’s java interpreter4: so, a Java application can be executed in .NET
as in would be in a Java-enabled machine, just replacing java with ikvm, in
a totally user-transparent way.

3The option must be specified to generate the pdb (Program Debug Database) file, to
be copied to the application folder in Visual Studio.

4Most command line options work identically with both tools.

197

The class loading mechanisms in this modality behaves exactly as in
Java, with the class path options. The only drawback is performance, which
is obviously penalized by the on-the-fly translation.

The static modality is supported by the ikvmc tool, which generates
a dll or exe .NET assembly (depending whether the translation concerns
a Java library or application, respectively) converting Java types to .NET
types. Obviously, this tool has no Java counterpart: its options control
the target architecture (x86 or x64), the kind of output (dll/exe), etc.
Unlike the previous case, here the Java class loading mechanisms has some
limitations, that are discussed below. One possible drawback is IKVM choice
of translating the Java package visibility into .NET internal ’s, making it
impossible to access such properties and methods from other assemblies
(even though they were accessible in the Java architecture).

8.2.2 Class loading issues

The class loading mechanism is perhaps the major issue when translating
Java applications to .NET, because of the very different approach adopted by
the two architectures, which makes it difficult to define a general mapping.
In fact,

• the Java approach is based on the class path concept, which defines
the set of paths where classes must be looked for;

• the .NET approach, instead, exploits the current folder, the Global
Assembly Cache (GAC) and configuration files for the same purpose.

In order to bridge this gap, IKVM adopts the following intelligent approach:

• each statically-generated assembly is associated to its own class loader—
either a user-supplied one, or the default one;

• the default class loader looks for classes:

1. first, in the assembly itself;

2. then, in all the assemblies directly referenced by the former.

This approach guarantees that classes are always found if all dependencies
are statically expressed, i.e. if all the libraries used by an application are
statically known, and their references are added in the application project.
Problems are to be expected, instead, for dynamically loaded classes, whose
references were not included in the project—and whose assemblies, therefore,
are not considered by the class loader.

198

To overcome this issue, four alternatives can be followed:

1. creating a single assembly, if size is not a problem and run-time mod-
ularity is irrelevant (that is, loading all modules even when just one is
actually used is irrelevant);

2. adding a static reference (-r option) to the library to be dynamically
loaded, when the application is translated to .NET: then, the default
.NET loading will locate the library, but the need to specify all its
details (including version number) cancels most of the advantage of
dynamic loading, since any change in the library to be loaded still
requires a rebuild;

3. using the special ikvm.runtime.AppDomainAssemblyClassLoader class
loader provided by IKVM;

4. writing an ad-hoc class loader, typically extending URLClassLoader:
this is perhaps the most flexible, but also the user-heaviest, solution.

One further interesting aspect is that the IKVM implementation of Java’s
Class.forName method adopts a more general behavior than Java’s de-
fault implementation, supporting the dynamic loading of classes also be-
yond the current assembly even without special options, provided that their
AssemblyQualifiedName is specified; otherwise, only the current assembly
is checked.

So, a Java application that exploited Class.forName for dynamic class
loading, that could originally load only classes in the application JAR unless
properly launched (see Section 7.3.3), will be able to load .NET5 classes
beyond the application’s own assembly when translated to .NET via IKVM.

For the above reason, the set classpath/1 and get classpath/1 pred-
icates available in tuProlog for Java are not available for .NET classes, as
they refer to the class loading mechanism available in Java only, which re-
mains “behind the scenes” in tuProlog.NET only for Java parts translated
to .NET via IKVM.

8.2.3 The other way: writing .NET applications in Java

Beyond converting Java applications in .NET, IKVM also supports the op-
posite direction—that is, writing .NET applications in Java, as if this were
one of .NET-supported languages.

5The reason why this feature is limited to .NET classes is, trivially, that only .NET
classes possess the AssemblyQualifiedName property and the other assembly details (ver-
sion, culture, public key token).

199

This feature is provided by the ikvmstub tool, which generates a Java
JAR archive from a .NET assembly (dll/exe). As the tool name suggests,
the generated JAR is just a stub, containing all the Java classes and inter-
faces corresponding to the .NET originals, but no actual implementation,
since this will be written directly in Java: its purpose is just to satisfy the
javac compiler’s type checking, and enable the code completion feature on
the IDE (e.g. Eclipse) used for the Java application development.

In this way, a Java application can be written (in Java—using Eclipse,
Netbeans, etc.)) that exploits the .NET types extracted from the .NET
original assemblies. This application can be compiled with javac as usual,
specifying the above stub JAR in the class path (-cp option).

Obviously, such an application can not be run in Java with the stan-
dard java interpreter, as the above stub JAR does not contain any actual
implementation—nor would that be reasonable, since the goal was to exploit
Java to write a .NET application, not a Java one. Instead, the resulting
“fake” Java application is to be translated via ikvmc, and then executed in
.NET where the original assemblies provide the “missing” classes.

In this context, .NET concepts are mapped onto suitable Java concepts
by ikvmstub as follows:

• namespaces are mapped onto Java packages, pre-pending the cli.

prefix to prevent name clashes;

• properties are mapped onto a pair of Java get /set methods;

• enumerations are mapped onto classes extending cli.System.Enum,
with static fields with integer values for each possible value of the
.NET enumerative type;

• delegates are mapped onto a Java class and a nested helper Method in-
terface: the class derives from System.MulticasDelegate and has the
same name as the original delegate, while the nested interface always
declares an Invoke method whose signature matches the delegate: this
method is called when an event occurs. This is why, the class construc-
tor takes as its argument an object implementing the Method interface,
whose implementation of Invoke does the actual job.

• events are mapped onto a pair of Java add * /remove * methods,
whose argument is an object of the class representing the delegate;

• params is mapped onto an array of Objects;

200

• attributes are mapped onto a Java class with the same name as the
.NET attribute, plus a pair of Java get /set methods for each prop-
erty defined by the attribute.6

8.3 tuProlog.NET now

The management difficulties in keeping coherent two such evolving projects
(the Java and the .NET versions) indicated that the approach of a separate
development was not sustainable in the perspective. This led to a complete
strategic change, resulted into the adoption of the IKVM [1] bytecode trans-
lator as a tool to automate the generation of tuProlog.NET from the same
Java bytecode (other than sources) as the Java version, which could then
become the only one to be actively maintained “by hand”.

Despite some (minor) performance issues (the IKVM-generated tuProlog
version appears 15% slower, in the average, than its Java counterpart), the
approach turned out to be winning, enabling the two platforms to converge
for all they have in common—namely, everything other than the CLILibrary
and the .NET-specific issues.

8.3.1 Highlights

tuProlog.NET 2.5 builds on top of the winning idea of version 2.2 (language
conventions for multi-language interoperability with Prolog), but goes far-
ther by exploiting the value-added brought by the IKVM approach: the
chance to use even Java as if it were directly available on the .NET plat-
form. This extra value spreads into several directions:

• .NET objects can be accessed, in addition to Java objects, via OOLi-
brary – the renovated version of JavaLibrary – from tuProlog;

• .NET applications can be developed (instead of Java applications,
which obviously require the tuProlog Java version) that exploit tuProlog
as a third-party library, with the only difference that a dll assembly
is to be referenced by the (Visual Studio) project, instead of a JAR
archive;

6The java class also includes a nested Java annotation, called Annotation, which defines
Java methods homonomous to the .NET attribute properties: any reference to such an
annotation in the Java code will be translated into the corresponding .NET attribute when
the application is converted to .NET. However, only read properties are supported, even
if the original .NET attribute properties were read/write.

201

Benchmark Java direct Java via Prolog C# direct C# via Prolog
Math 118 182 116 118
Concat 185 211 162 161
Sort 147 149 142 143

Table 8.1: Performance comparison between Java and C# code executed
directly or via tuProlog.NET (times in milliseconds).

• the whole P@J framework for implementing Java methods in Prolog
remains available, and takes a newer form in the .NET context;

• tuProlog libraries can be written in Java, as well as in other .NET
languages, resulting into a dll assembly in the end;

• Java can be used together with C#, F#, and other .NET languages
in the same .NET application, where tuProlog can possibly play the
role of the director (orchestrator, coordinator) in-front-of or behind
the scenes.

In the next Sections of this Chapter, these dimensions are discussed and
explored, roughly following the same structure as Chapter 7.

From the performance viewpoint, the experience of the older tuProlog.NET
2.2 (see Section 8.1.3) showed that an overhead is to be expected on Java
applications. To quantify it in some common situations, Table 8.1 shows the
average execution times of three micro-benchmarks (math, concat and sort)
when written in Java and C#, executed directly and via tuProlog.NET, re-
spectively: math performs algebraic operations on real numbers, concat con-
catenates strings via the StringBuilder class available in both languages,
and sort sorts an array of integer numbers via quicksort.

Quite clearly, the execution of Java code via IKVM introduces an over-
head7 whose weight depends of the specific operation area, and whose cause
is mainly the IKVM implementation of Java libraries: in fact, the sort test,
where IKVM incorporates its own implementation of the Java library instead
of using the default one, is not affected in its performance.

Conversely, the execution of .NET code (the implementation language
selected is irrelevant for this comparison) is basically overhead-free even
when triggered from tuProlog.

7These figures are not very sensitive to the time overhead of class loading, because
the classes to be loaded here are few and small: however, the first iterations of the test
program do show higher execution times for this reason.

202

8.4 Using .NET from Prolog: OOLibrary

8.4.0.1 Motivation

Since tuProlog.NET is automatically generated from the Java sources via
IKVM, JavaLibrary is also available for free; however, since this library was
designed for Java, it inherently supports Java concepts and constructs, but
is obviously unaware of the features that are specific to .NET languages,
such as properties, delegates, etc. So, while .NET objects could be loaded
and exploited via JavaLibrary “as is” (thanks to the extended semantics of
Class.forName discussed in Section 8.2.2), their support would be imper-
fect, for three main reasons:

• the lack of support for some .NET language constructs;

• the different Java naming convention for methods w.r.t. Java;

• the code reorganisation performed behind-the-scenes by the .NET com-
pilers, which sometimes change the names of syntactic elements—for
instance, properties are compiled by adding a pair of getter/setter
methods.

These aspects are put well in evidence by the example below, which refers
to a class Student (written in C#) defining a “standard” student with some
“obvious” properties:

java_object(’CStudent.Student, CStudent’,

[123456,’John’,’Smith’], Obj),

Obj <- ’PrintStudent’ returns Value,

Obj <- ’get_Name’ returns Value,

Obj <- ’set_Name’(’Albert’).

As the first line shows, a Student instance can be created via java object/3

as if it were a Java class, but only by means of its AssemblyQualifiedName—
possibly specifying also its version, culture and public key. Moreover, the
method name must be quoted, since the .NET conventions require the first
letter to be capitalized. Last but not least, access to properties – that the
translated JavaLibrary does not know as such – must be mediated by the
get/set methods added by the .NET compiler, with a loss both of expressive-
ness (the Obj.Property notation is lost) and of transparency (the compiler
transformations must be known to bypass the problem).

This is why the direct use of JavaLibrary is deprecated (actually, dis-
abled) in tuProlog.NET, which provides a better alternative: OOLibrary.

203

Figure 8.1: Library manager in tuProlog.NET: notice the OOLibrary loaded
instead of JavaLibrary.

This new library is therefore loaded by default in place of its Java counter-
part. As shown in Figure 8.1, to be compared with Figure 3.11 on page 25,
the Library Manager dialog here lists OOLibrary, instead of JavaLibrary, as
its first item.

OOLibrary extends JavaLibrary by enabling tuProlog.NET to interact
with both Java and .NET software components. In principle, any .NET lan-
guage can be supported, although the current distribution includes the sup-
port only for the most widely used .NET languages (C#, F# and VB.NET),
other than Java itself; however, the support for other .NET languages can
be easily added, by defining further language conventions.

8.4.0.2 Language Conventions

Language conventions are tuProlog means to separate and embed the language-
specific aspects from the library core: originally introduced in tuProlog.NET
2.2 (see Section 8.1.3 above), they work as a bridge between the language-
specific naming issues and the underlying Java-based machinery.

Conventions define standard methods (Table 8.2) that express how the
name of the required entity (class, method, property, public field, etc) must

204

public abstract class Convention{

public abstract string Name ...

public virtual string GetNamespace(string oldNamespace) ...

public virtual string GetClassName(string oldClassName) ...

public virtual string GetMemberName(string oldMemberName) ...

public virtual string GetFieldName(string oldFieldName) ...

public virtual string GetPropertyGetterName(string oldPropName) ...

public virtual string GetPropertySetterName(string oldPropName) ...

public virtual bool IsArrayClass(string className)...

public static Convention LoadConvention(string assembly,

string className)...

}

Table 8.2: The public interface of the root Convention class. Any actual
convention for a given language must specialize from this class according to
the language details.

be modified to take into account the compiler modifications, so that the
original .NET name may be transparently used in a tuProlog program.
Obviously, the GetXX methods convert the name of the corresponding entity,
while IsArrayClass checks whether the class represents an array—typically
verifying if its name ends with "[]", but this behavior can be redefined if
a language adopts a different naming scheme. The abstract Name property
represents the name of the convention: each actual convention will set it to
the corresponding language (i.e., "csharp", "fsharp", etc.)

Currently, four conventions are included in the distribution:

• C#: in this language all the names, except for field names, must
start with a capital letter: so the GetXX methods must change the
letter case accordingly. Moreover, since properties are compiled in a
pair of get /set methods, the two GetPropertyGetterMethod and
GetPropertySetterMethod methods return strings like get PropName

/ set PropName , respectively.

• F#: this convention is identical to C#’s.

• VB.NET: this convention is identical to C#’s, except for arrays, that
are defined through () in Visual Basic .NET instead of []: so, the
IsArrayClass method is redefined accordingly.

• Java this convention operates opposite to the above, changing method
and field names so that they start with a lowercase letter; class names

205

public class OOLibrary {

public bool new_object_3(Term className,

Term args, Term objRef)

public bool new_object_4(Term conventionName, Term className,

Term args, Term objRef)

public bool new_object_4(Term conventionName, Term className,

Term constructorName, Term args, Term objRef)

public bool destroy_object_1(Term objRef)

public bool method_call_3(Term objRef, Term methodName, Term resRef)

public bool load_convention_3(Term assemblyName,

Term conventionName, Term convRef)

public bool dload_convention_3(Term assemblyName,

Term conventionName, Term convRef)

public bool unload_convention_1(Term convRef)

}

Table 8.3: The public interface of the OOLibrary class. In addition, the
< −/2, (< −,returns)/3 and . operators are defined for method calling
and field/property access with the get/set pseudo-methods, exactly as in
JavaLibrary.

are checked for starting with an uppercase letter, and packages are
changed to all-lowercase.

Since conventions and OOLibrary are part of tuProlog.NET only, they are
both implemented in C#, to avoid unnecessary intermediate conversions.

8.4.0.3 OOLibrary: predicates

OOLibrary puts together the easy of use and immediateness of JavaLibrary
with the convention-based inspiration of the former CLILibrary (found in
version 2.2): Table 8.3 lists its predicates.
These methods modify the names of the received entities according to the
specified convention, then call the corresponding JavaLibrary methods. For
instance, if the target object is written in C#, OOLibrary:

• retrieves the associated convention (if any);

• changes the method name accordingly;

• invokes java call 3 to perform the operation.

The dload convention 3 method is the directive version of load convention 3),
the difference being in the lifetime of the loaded convention: the directive

206

loads a convention for the whole life of the current tuProlog engine, while
the standard version loads it for the duration of the current query only.

8.4.1 Examples

The Student class (already cited in Section 8.4) has been rewritten in all the
four supported languages: Tables 8.4 shows how it can be exploited from
tuProlog.NET in Visual Basic (top two examples) and Java (bottom two
examples), with and without conventions, while Table 8.5 shows a compre-
hensive example where all the four supported .NET languages are used at
the same time by the same tuProlog program.
Without conventions (Table 8.4), syntax is heavier and less natural from the
viewpoint of the language considered. In the first example, for instance, i)
method names must be quoted because of their capital initial, ii) accessing
a property means to know the corresponding method name (get Id), and
iii) array creation calls for an “absurd” (from the VB.NET viewpoint) []

suffix instead of the () used in that language for that purpose. Using the
VB convention, instead, method quoting is no longer necessary, property
access can be made in a straightforward way (Object.Property notation),
and array .creation adheres to the Visual Basic syntax rules.

Similar considerations apply to Java objects, too: in this case, either the
Java class is translated in .NET statically (in which case the corresponding
dll will be available in the file system), or the Java .class file is kept “as is”,
and is loaded and converted dynamically by IKVM when needed8 In this case
the convention is perhaps less necessary, since the naming changes imposed
by the language style are minimal; yet, the convention makes it possible to
write method names with the lowercase initial, making the Prolog writing
lighter.

Table 8.5) shows two examples of such situations, whose run is shown
in Figure 8.2: the top one instantiates a StringTokenizer object, using
IKVM’s implementation of that class (whose dll, therefore, is statically
available), and uses it to scan a string, while the bottom one is a case of
dynamic compilation of a Java source: the source is compiled by IKVM on
the fly into a dll, which is then loaded and used as appropriate—here, to
open a file chooser dialog and return the selected file name (see the output
tab in the GUI).

Table 8.6) shows one further example, where tuProlog instantiates and
exploits objects written in multiple languages, maintaining the interoperabil-

8via the ClassPathAssemblyClassLoader (Section 8.2.2).

207

visualbasicWithoutConvention :-

new_object(’VBStudent.Student’,[123456, john, smith], Obj),

Obj <- ’PrintStudent’ returns Student,

Obj <- get_Id returns StudentNumber,

class(’VBStudent.Student,VBStudent’) <- get_StaticProperty returns Value,

new_object(’VBStudent.Student, VBStudent[]’,[10], Array).

visualbasicWithConvention :-

load_convention(’VBConvention.dll’,’VBConvention.VBDotNet’,Conv),

new_object(Conv,’VBStudent.Student, VBStudent’,

[123456, john, smith], Obj),

Obj <- printStudent returns Student,

Obj.id <- get(StudentNumber),

class(’VBStudent.Student, VBStudent’).staticProperty <- get(Value),

new_object(Conv, ’VBStudent.Student, VBStudent()’,[10], Array).

javaWithoutConvention :-

new_object(’javastudent.Student’,[123456, john, smith], Obj),

Obj <- printStudent returns Student,

Obj <- getId returns StudentNumber,

class(’javastudent.Student’) <- printInfoUniv returns University,

new_object(’javastudent.Student[]’,[10], Array).

javaWithConvention :-

load_convention(’JavaConvention.dll’,’JavaConvention.Java’,Conv),

new_object(’javastudent.Student’,[123456, john, smith], Obj),

Obj <- ’PrintStudent’ returns Student,

Obj <- getId returns StudentNumbers,

class(’javastudent.Student’) <- printInfoUniv returns University,

new_object(’javastudent.Student[]’,[10], Array).

Table 8.4: Using the Student class in Visual Basic and Java without / with
conventions.

208

useJavaClassAsIs :-

new_object(’java.util.StringTokenizer’, [’This is my string’], Tokenizer),

Tokenizer <- nextToken returns Token1,

write(Token1), nl.

dynamicCompilation :-

java_class(’public class MyClass {

public String showFileChooser(String title) {

javax.swing.JFileChooser chooser = new javax.swing.JFileChooser();

chooser.setDialogTitle(title);

chooser.showOpenDialog(null);

java.io.File file = chooser.getSelectedFile();

return file.getName();

}

}’,

’MyClass’, [], C),

new_object(’java.lang.String’,[’Select a file from tuProlog!’], Message),

C <- newInstance returns Object,

Object <- showFileChooser(Message) returns FileName,

write(FileName).

Table 8.5: Using the Java StringTokenizer straight from tuProlog.NET
(top) and dynamically compile a Java source, convert it to dll, and use it
directly to instantiate an object and exploit it (bottom). See also Figure 8.2.

209

Figure 8.2: tuProlog.NET executing the example in Table 8.5. Of course,
the execution time of the second example is sensible, since ikvm is triggered
behind the scenes to compile the class source.

210

sumAllExams(TotExams) :-

load_convention(’CSharpConvention.dll’,’CSharpConvention.CSharp’,CSConv),

load_convention(’FSharpConvention.dll’,’FSharpConvention.FSharp’,FSConv),

load_convention(’VBConvention.dll’, ’VBConvention.VBDotNet’, VBConv),

load_convention(’JavaConvention.dll’, ’JavaConvention.Java’, JConv),

new_object(CSConv, ’CStudent.Student, CStudent’,[122345,’john’,’’], StudCS),

new_object(FSConv, ’FStudent.Student, FStudent’,[525718,’Mary’,’’], StudFs),

new_object(VBConv, ’VBStudent.Student, VBStudent’,[987650,’Jean’,’’], StudVB),

new_object(JConv, ’javastudent.Student’,[476328,’Holly’,’’], StudJa),

StudCS.exams <- get(Ex1),

StudFs.exams <- get(Ex2),

StudVB.exams <- get(Ex3),

StudJa <- getExams returns Ex4,

TotExams is Ex1 + Ex2 + Ex3 + Ex4.

Table 8.6: Using four Student classes written in four languages.

ity between Prolog primitive types (string, numbers, etc) and the primitive
types of the .NET and Java languages. In fact, values in the Prolog variables
Ex1, Ex2, Ex3 and Ex4 are summed directly, with no explicit conversions.

Interoperability between .NET and Java classes becomes a problem, in-
stead, when complex types (i.e., anything other than primitive types) are
involved in the same tuProlog program, because a Java object, possibly re-
turned from a Java method, cannot be passed to a .NET instance “as is”, and
no automatic conversion occurs. The typical workaround to this problem is
to transform the problematic data in suitable Prolog strings that constitute
a valid tuProlog representation of a value of a Prolog type (and viceversa),
thus exploiting tuProlog as a mediator (both as a component and as a lan-
guage) to overcome the incommunicability. This issue is covered more in
detail in Section 8.8 below.

8.4.2 Handling .NET Exceptions

Since OOLibrary is rooted on JavaLibrary, exceptions raised during the
execution of methods on .NET objects accessed from Prolog behave exactly
as in the Java case (see Section 7.1.7)—that is, .NET exceptions are never
perceived as such: rather, they are encapsulated in some Java exception.

Accordingly, these exceptions are handled in tuProlog.NET via the same
java catch/3 predicate defined in Section 7.1.7 for the Java version: syntax

211

Figure 8.3: java catch example in .NET

and use are identical to the Java case, too.
For instance, let us suppose that the Counter class has been defined in

.NET, and we wish to intercept the case that the class is not available at run
time for loading. This means that the OOLibrary’s new object predicate
could fail to load the class, raising an exception. In a standard .NET envi-
ronment, the exception raised would be a .NET TypeNotFoundException,
but this is not the case here, because the mediation of IKVM encapsu-
lates such events and re-throws them as Java exceptions. As a result, a
java.lang.ClassNotFoundException has to be matched against, as in the
following example:

test:-

java_catch(new_object(’Counter’,[], c),

[(’java.lang.ClassNotFoundException’(Cause, Msg, _),

write(Msg))],

write(’+++’)).

This is why the predicate name remains java catch, as in JavaLibrary – in
fact, it captures Java exceptions only.

Figure 8.3 shows the above examples and the corresponding output in
the tuProlog GUI. However, please note that this is by no way a definitive
choice, since future developments might include the ability to trap .NET
exceptions natively.

For further examples, the interested reader can refer to Section 7.1.7.1
on page 157, where Java-related exceptions are presented and discussed.

212

8.5 Using Prolog from .NET: the API

Since tuProlog.NET is automatically generated from the Java sources via
IKVM, the available API is the same presented in Section 7.2. To create a
.NET application using tuProlog, do the following:9

1. open the IDE of your choice (we refer to Microsoft Visual Studio 2010);

2. create a new project (in our case, from the File menu, select New
> Project), select the proper language (in this case, Visual C# from
the left panel), the proper application type (here, Windows Forms
Application), and digit the application name and file position (Figure
8.4, top);

3. add a reference to the tuProlog.NET assembly, tuprolog.dll (in this
case, right-click on References in the Solution Explorer panel, click on
Add References, browse the file system up to the assembly and select
it—Figure 8.4, bottom);

4. add a reference to the IKVM.OpenJdk.Core.dll assembly that con-
tains the IKVM implementation of Java packages, following the same
procedure;

5. now write/draw your .NET application (in this case, we draw the user
interface shown in Figure 8.5 (top) and write the implementation of
the OK button 8.6); the final result (an application for the symbolic
derivative of a function, where Prolog takes care of the symbolic cal-
culus and .NET of the GUI) is shown in Figure 8.5 (bottom).

8.6 Augmenting Prolog via .NET:
developing new libraries

New tuProlog.NET libraries can be written in any of the .NET languages,
and then compiled normally via Microsoft Visual Studio; alternatively, li-
braries written in Java can be used, by translating them in .NET via IKVM
(if they are not part of the standard tuProlog distribution, of course).

The approach is the basically same presented in Section 7.3 (same method
conventions, same need to extend alice.tuprolog.Library), etc.: the only

9The example is taken from the degree thesis in Computer Engineering of Alessandro
Montanari, Università di Bologna, 2010.

213

Figure 8.4: Creating a .NET application using tuProlog in Visual Studio:
new project.

214

Figure 8.5: Creating a .NET application using tuProlog in Visual Studio:
the user GUI

215

Figure 8.6: Creating a .NET application using tuProlog in Visual Studio:
the .NET handler of the OK button.

216

difference concerns how libraries are located in the file system, which obvi-
ously adheres to the .NET conventions10. Accordingly, the configuration file
2p.exe.config specifies the custom paths where the library probing must
take place: currently, the lib folder is included, so as to provide a stan-
dard place where to put any third-party library. If Java classes are also used
(.class or .jar), these must be in the same folder as the 2p.exe executable
(subdirectories are not acceptable).

For instance, if the TestLibrary shown in Section 7.19 on page 177
is translated via IKVM11 obtaining TestLibrary.dll, the tuProlog.NET
GUI can load it directly either via load library/1, using its full name
’TestLibrary, TestLibrary’, or via the Library Manager dialog, specify-
ing TestLibrary, TestLibrary (without quotes) as the class name (Figure
8.7), provided that TestLibrary.dll is in one of the folders where tuProlog
is instructed to search—e.g. the lib subfolder.

8.6.1 Capturing exceptions raised in .NET libraries

Unlike the OOLibrary (and JavaLibrary) case, where the exceptions possi-
bly raised during a call to some method call can be perceived and caught
via the java catch/3 (or any future renamed version) predicate (Section
8.4.2), the exceptions possibly raised inside a library (in this case, written
in .NET) cannot be caught at all, since they have nothing to do with the
OOLIbrary/JavaLibrary filter. So, if any such exception occurs inside a
library, the corresponding predicate simply fails.

8.6.2 Capturing the .NET output in Prolog

Like the Java case, the output possibly performed by the user library is not
captured in the tuProlog.NET GUI (the engine simply replies yes), because
a .NET windows application is not connected to any terminal: even when
launched by a command prompt, the app releases the terminal immediately,
so no standard output is defined. This means that, unlike the Java case, any
output possibly performed from .NET predicates does not go to the terminal
even if there is one—it simply gets lost. So, the only way to perform output
is via the Prolog write/1 predicate.

10 http://msdn.microsoft.com/en-us/library/yx7xezcf.aspx
11Command: ikvmc -r:2p.exe TestLibrary.class

217

Figure 8.7: Loading the translated TestLibrary in the tuProlog.NET GUI
either via the load library predicate (top) or via the library manager (bot-
tom). (Compare with Figures 7.5 and 7.7 on page 182.)

218

8.7 Augmenting .NET via Prolog:
the P@J framework revised

Since tuProlog.NET is automatically generated from the Java sources via
IKVM, the P@J framework presented in Section 7.4 is also available. How-
ever, due to intrinsic differences between Java types and .NET types (with
special regard to the different handling of generic types in the two plat-
forms), the operativity of the translated P@J in .NET is only partial: to
fully exploit the P@.NET functionalities in the .NET world, a new approach
has been set up that takes full advantage of advanced features (such as au-
tomatic code generation) supported by Microsoft Visual Studio, adopting
a different development and computational model while achieving the same
conceptual results.

More precisely, the translated P@J in .NET is subject to the following
limitations:

• a Java application using P@J, translated to .NET via IKVM, works
normally in .NET (provided that the proper reference to the translated
version of the Javassist library, Javassist.dll, is added to the ikvmc

command, as follows:
ikvmc -r:2p.exe -r:javassist.dll App.class

whose result, App.exe, is ready to be executed;

• instead, a .NET application trying to use P@J via .NET attributes
(the .NET counterpart of Java annotations) fails, resulting into an
exception in the Javassist tool, because of the incompatible handling
of generic types in Java and .NET.

The reason of the above malfunctioning is rooted in the type erasure tech-
nique adopted by the Java compiler to support generic types without chang-
ing the underlying Java Virtual Machine (JVM): with this approach, generic
type information is only exploited by the compiler for type checking, but is
removed in the generated bytecode, where generic types are replaced with
Object or more constrained types (e.g. Comparable, Serializable, etc)
when appropriate. While this guarantees that the new code can run on un-
modified an JVM, it also implies that generic type information is no longer
available at run time. This is typically unperceived when programming on
the Java side alone (except in some particular situations that cannot be
discussed here), but does become relevant when interacting with other en-
vironments and languages that adopt a different strategy: this is precisely

219

the case of .NET, whose intermediate language does maintain generic type
information at run time, too. As a result, Java methods exploiting generic
types will not match analogous .NET methods (e.g, C# methods) at run
time, because the Java compiler erases such type information changing the
method signatures: consequently, the translated .NET methods produced
by IKVM will also adopt the modified signature – as there is nothing that
IKVM can do reconstruct the removed type information. In our context,
this turns out in the translated P@J being unable to interact with the “ex-
pected” .NET methods, since, in any sense, such methods are have different
signatures.

Quite clearly, the nature of the problem makes a patch impossible, since
type inference and generics are essential ingredients of the P@J’s architecture
and computational model. Newer versions of IKVM could not help, either,
because the problem is intrinsic to basic language choices.

For this reason, a radically different, .NET specific approach has been
developed, which addresses the P@J goal by a totally different perspective.

8.7.1 P@.NET via code generators

The novel approach described in this section, introduced in tuProlog 2.7, is
based on the code generation feature provided by Microsoft Visual Studio: in
particular, the new tool will be provided as a Visual Studio extension, easy
to deploy and install by double-clicking12 a self-contained .vsix archive.

Basically, the idea is to replace the run-time approach of P@J – where
the Prolog code inlined in the Java source is captured and executed at run
time via Javassist – with a development-time approach, where the Prolog
code is written in a stand-alone (.pl) file, and a suitable .NET class is
automatically generated from such code, compiled to a DLL and linked in the
project transparently. As a result, the multi-paradigm .NET programmer
can develop his/her Visual Studio solution mixing C# (or VB.NET, etc)
and Prolog code, with the Prolog code being automatically “converted to a
DLL” any time the Prolog source file is saved. In addition, Prolog errors are
reported back to Visual Studio, that shows them seamlessly as compilation
errors.

The code generator works on standard tuProlog sources – that is, no
modifications are required to make Prolog sources compatible with the tool;
moreover, the generated C# (or VB.NET, etc) class can be customized in its
name and namespace. Even more important, the code generator can operate

12Microsoft Visual Studio (2005+, 2010 suggested) must already be installed.

220

in two modes – namely, static and dynamic modes. In static mode, the Pro-
log code is encapsulated in the .NET source when the C# (or VB.NET, etc)
class is generated, similarly to P@J’s (where the Prolog code is inlined with
the Java code); in dynamic mode, instead, the generated C# (or VB.NET,
etc) class contains only the code to load the Prolog source, deferring the
actual loading at run time. This makes it possible to dynamically change
the Prolog code without affecting the imperative part of the application,
and has no counterpart in the classical P@J behaviour.

By default, the generated class adopts the static mode, belongs to the
same namespace as the .NET project that contains the Prolog source file,
and has the same name as the Prolog source file: so, for instance, a Prolog
source file named Perm.pl will lead to a class named Perm.cs belonging
to a namespace named after the project name (e.g. PrologTestSolution

in Figure 8.8 (top). However, the class generation can be customized by
specifying the namespace and/or the class name to be used, annotating
the Prolog code with the following meta-information in the form of Prolog
comments:

%NameSpace namespace

%ClassName classname

To select the dynamic mode instead of the default static mode:

• a placeholder (fake) Prolog file must be included in the Visual Studio
project instead of the actual Prolog source file;

• the placeholder file must contain the meta-information
%ExtFile prologsource.pl

that specifies the name of the actual Prolog source file to be loaded.

Figure 8.8 (bottom) shows the example above handled with the dynamic
mode: the Prolog file on the left is now the placeholder, containing only the
required meta-information for the Prolog generator.

Currently, class templates are provided for C# and VB.NET only; how-
ever, other .NET languages might be supported easily, writing analogous
templates and extending PrologGenerator to handle the new project type.

8.8 Putting everything together

As anticipated in Section 8.4.1, interoperability between .NET and Java
classes occurs transparently via tuProlog.NET only as long as primitive data
types are involved; a problem occurs, instead, when complex types (like lists,

221

Figure 8.8: Top: generation of a C# class from the Prolog source (Perm.pl)
shown on the left (default, static mode); the new class is named Perm.cs.
Bottom: same example in the dynamic mode. The Prolog file on the left
is now just a pure placeholder containing a reference to the actual Prolog
source. The generated class now loads the specified external file instead of
embedding the Prolog code as a string.

222

Figure 8.9: Using tuProlog.NET to bridge between classes using heteroge-
neous data types.

arrays, etc.) are asked to cooperate in the same tuProlog program, because
a Java object, possibly returned from a Java method, cannot be passed to a
.NET instance “as is” (and vice-versa), and no automatic conversion occurs.
The typical workaround to this problem is to transform the problematic data
in suitable Prolog strings that constitute a valid tuProlog representation of
a value of a Prolog type (and viceversa), exploiting tuProlog as a mediator
(both as a component and as a language) to overcome the incommunicability.

Suppose, for instance, that two libraries – one written in Java, the other
in some .NET language – are to be used together in some application. To
exploit tuProlog.NET as a mediator, the critical data to be exchanged must
be first serialized into suitable Prolog strings, and then converted into Prolog
terms that become the lingua franca for data exchange. The reason for
choosing a string based representation is that, beyond its easy applicability
to virtually any data type, it can exploit the text term/2 predicate (which
transforms a Prolog term into its textual representation according to pre-
defined rules, and viceversa) for speeding up the job and/or perform other
intermediate transformations.

These adapter functions can be either encapsulated in the libraries, if
their source is available and can be modified, or be put in some ad hoc
converter classes (Java / .NET depending on the situation), or even be
performed directly in Prolog, if the conversion can be more conveniently
done in this way.

Figure 8.9 shows this kind of situation: class A exposes the GetMyList

method that return an instance of MyList, while class B provides a PrintList
method that accepts a List instance (not a MyList, then). Using tuProlog
as a mediator/adapter means a) to develop the required pair of serial-

223

ize/deserialize methods, and b) exploit tuProlog to bridge class A and B
via such methods. In this case, MyListToString and StringToList are
needed to convert MyList to string, and string to List, respectively. If both
classes A and B are .NET classes, the best option is probably to implement
them as static operations of a third Converter .NET class; if, instead, the
two classes belong to different platforms, two different converter classes need
to be set up—one in Java, to host MyListToString, and one in .NET, to
host StringToList.

The resulting Prolog code would them be something like this:

...

A <- GetMyList returns MyList,

Converter1 <- MyListToString(MyList) returns MyListAsText,

% any intermediate transformation

Converter2 <- StringToList(ListAsText) returns List,

B <- PrintList(List),

...

8.8.1 Example: Multi-language TicTacToe

This example aims to show the data exchange issue between .NET and
Prolog in the context of a multi-paradigm application. To this end, the
different aspects are assigned to different languages, as follows:

• C# is used for the main entry point (tictactoe.exe file, Figure 8.10);

• a .NET language is used for the data model and I/O handling, i.e.
the TicTacToe class: this class is actually implemented in different
versions using different languages (C#, VB.NET, F# and Java), to
test interoperability in different situations (Figure 8.11);

• Prolog is used to express the game logic, i.e. the move generation: this
part is coded in the tictac.pl file (Figure 8.12).

In particular, the Cells property returns an array of char that represents
the status of the game, each cell being ’x’, ’o’ or a number in the range
1–9 (the cell number) if it is still free, while the Board property returns the
above status in the form of a string interpretable as a Prolog term—namely,
something like ’board(,x,o,x, , , ,o,x)’. In turn, this format is used
by the Prolog logic to generate the computer moves.

The Play method receives the cell number and the player (one of ’x’,
’o’ as a string), while CheckWin checks whether some has won (0 meaning

224

Figure 8.10: The Main class in C#: in this case, the C# version of the
TicTacToe class is loaded (last line), but this argument could easily be taken
from the command line. Note the loading of OOLibrary and the capturing
of Prolog code with the same technique presented in Section 7.2.6.

no one, 1 meaning that the winner is player ’x’, 2 that it is player ’o’).
The other methods are self-explaining.

In the Java version, the above properties are replaced by suitable meth-
ods; this difference is handled by embedding in the Prolog logic two versions
of the get board and get remaining predicates, that differ only for this
aspect: in particular, the first predicate converts the input string into a
board/9 term via the text term library predicate.

The application is launched by one of the loadgameCS, loadgameVB,
loadgameFS, loadgameJava methods, that are identical except for loading
the TicTacToe class of the corresponding language. Then, the app prompts
the user for the preferred placeholder (the preference is stored in the Player
variable) and asks whether he/she likes to move first, or not: PlayerMoves

contains yes/no depending whether it is the human player’s turn to play.
The actual move logic is embedded in oneMove, which has two alternative
implementations—one for the computer, and one for the human player: both
use get board above to get the game status. The computer move is gener-
ated by generateMove.

Interestingly, the Prolog output is captured with the same approach
presented in Section 7.2.6, defining the MyOutputListener class as follows:

public class MyOutputListener : OutputListener {

public void onOutput(OutputEvent e) {

System.Console.Write(e.getMsg());

}

}

225

Figure 8.11: The TicTacToe class: public interface.

The data exchange issue is evident here in the case of the game status: the
array is serialized to a string and converted into the desired Prolog term. The
opposite conversion (Prolog back to .NET or Java) is not necessary in this
application. The other arguments are of primitive types, so no conversions
are needed.

226

Figure 8.12: The Prolog code implementing the application logic.
227

Chapter 9

Multi-paradigm program-
ming in Prolog and Android

Being Java-based, tuProlog for Android provides the user basically with
the same features as the Java version: therefore, a clear understanding of
Chapter 7 on page 135 is a mandatory prerequisite for this Chapter. In this
Chapter, only some platforms-specific issues are discussed.

Reading the Android overview in Section 3.4 on page 34 is also highly
recommended.

9.1 Class path issues

As discussed in Section 3.4, tuProlog 2.9 introduces an Android-specific
class loader that handles Android-JAR archives with specific (i.e., “dexed”)
versions of the Java classes. Such archives can be generated from a standard
Java SE JAR archive via the dx tool provided by the Android SDK :

dx --dex --output = dexed.jar input.jar

where input.jar is the Java SE JAR file, containing only the class files to
be converted, and dexed.jar is the generated Android JAR file, containing
the single classes.dex required. Of course, the resulting JAR must be put
into a directory that is accessible to the Android class loader.

The key issue to be addressed in this Chapter concerns the class path
handling predicates, set classpath and get classpath. As shown in Fig-
ure 9.1, these predicates now operate on Android paths, too, allowing “dexed”
JAR archives on the SD card to be referenced (top picture).

228

Figure 9.1: Managing class paths and objects via JavaLibrary.

The dynamic object creation via JavaLibrary also works as in the Java
SE version (bottom pictures), with Java objects being created and exploited
in the same way as in Chapter 7.

229

Chapter 10

Version history

10.0.1 Version 2.0

Released on 30th October 2006:

• Completely redesigned the engine as a set of managers operating around
a Finite State Machine inferential core. (Andrea Omicini, Alessandro
Ricci, Alex Benini)

• Libraries can define new directives. (Alex Benini)

• Fixed bug in subsequent execution of multiple directives contained in
the same Prolog theory. (Alex Benini)

• Fixed semantics of Prolog#getLibrary(String): it now uses the li-
brary name instead of the library’s complete classname (Alessandro
Ricci, Giulio Piancastelli, Alex Benini)

• Added an hasOpenAlternatives method to alice.tuprolog.SolveInfo
(Alex Benini)

• Class alice.tuprolog.NullTerm has been removed, and empty list
implementation now lets [] =.. [[]] succeed. (Giulio Piancastelli)

• Fixed bugs in the evaluation triggered by is/2 and arithmetic functors.
(Alex Benini)

• Added a button to clear the Output view in the GUI. (Giulio Pi-
ancastelli)

230

• Now the GUI saves theories from the editor’s content instead of the
engine internal theory. Consequently, a button has been added to put
the engine’s internal content into the editor. (Giulio Piancastelli)

• Theories feeded to the engine from the GUI by means of consult/1 do
not get directly displayed in the editor anymore. (Giulio Piancastelli)

• Fixed bug in the use of mod/1 with a negative second argument. It
now conforms to the ISO Prolog standard specification. (Giulio Pi-
ancastelli)

• Fixed bugs in length/1: queries like length(A, -1) now fail; queries
like length(X, 5) do not have multiple solutions. (Alex Benini, Giulio
Piancastelli, Andrea Omicini)

• Fixed bug in term equality between integer numbers and real numbers
with the same integer part. (Giulio Piancastelli)

• Fixed bugs in the type of numbers returned by the following evaluable
functors: floor/1, ceiling/1, truncate/1, ’/’/2. (Alex Benini,
Giulio Piancastelli)

• Added the ISO Prolog float/1 evaluable functor. (Giulio Piancastelli)

• Fixed bug in JavaLibrary regarding the association mechanism be-
tween terms and objects. (Alex Benini)

10.0.2 From Version 2.0 to Version 2.0.1

Released on 30th January 2007

• Eliminated loop in solving conjunctions of goals. (Alex Benini) [Source-
Forge bug 1600617]

• No more ClassCastException throwing when a library is loaded in an
engine already containing a theory. (Alex Benini) [SourceForge bug
1601045]

• assert/1 does no more throw an exception on backtracking. (Alex
Benini, Giulio Piancastelli) [SourceForge bug 1589823]

• Halting in CUIConsole does no more throw an exception. (Alex Benini,
Giulio Piancastelli) [SourceForge bug 1589898]

231

• alice.util.LinkedList has been removed from the codebase. (Ivar
Orstavik)

• Corrected error in guide where it seemed that only one anonymous
variable existed in Prolog. (Giulio Piancastelli)

• Removed alice.tuprolog.StructKey, since hash codes are stored in String

objects anyway in the JVM: no need for a class to do that. (Ivar
Orstavik, Giulio Piancastelli)

• Removed alice.tuprolog.SymbolMap, since it wasn’t really optimising
anything. (Ivar rstavik, Giulio Piancastelli)

• Following the ISO Standard, arg/3 must not work if the first argument
is a variable. (Giulio Piancastelli) [SourceForge bug 1610797]

• =../2 now also works with numbers as its first argument, following
more closely the ISO Standard. (Giulio Piancastelli)

• functor/3 now also works with numbers as its first or second argu-
ment, following more closely the ISO Standard. (Giulio Piancastelli)

• Now >=/2 and =</2 fail when called with a variable. (Giulio Pi-
ancastelli)

• New, almost pure-Prolog, bagof/3 algorithm. This fixes a whole load
of tests, but does not solve SourceForge bug 1589920 entirely, because
failures still happen; so, that bug is left open. (Giulio Piancastelli)

• list/1 (and Term#isList) now correctly identify lists as terms with
another list as their tail. (Giulio Piancastelli) [SourceForge bug 1622783]

• assert/1 does not lose variable bindings when called multiple times
with a clause containing variables. (Alex Benini) [SourceForge bug
1601871]

• Prolog clauses contained in a library’s theory are no more retractable.
(Alex Benini)

• Var#isAtomic, Var#isAtom, Var#isCompound now take into account
the term to which the variable is bound. (Alex Benini)

• Added a Term#isEmptyList method to the Term hierarchy. (Alex
Benini)

232

• Removed the Term#isNull method from the Term hierarchy, since
NullTerm is no longer part of the engine codebase. (Alex Benini)

• No more NullPointerException in SpyEvent#toString. (Alex Benini)
[SourceForge bug 1644455]

• Corrected example in the tuProlog guide: called resolveTerm on a
Struct built with different Var instances with the same name. (Alex
Benini, Giulio Piancastelli)

• Fixed bug in Theory#append for theories created from clause lists.
(Miklos Espak) [SourceForge bug 1644264]

• Arithmetic operations with long integer numbers are now supported
for ’+’/2, ’-’/2, ’*’/2, ’/’/2, ’//’/2. (Ivar Orstavik, Giulio Pi-
ancastelli) [SourceForge bug 1644193]

• Deprecated isTypeXXX methods in the Number hierarchy, inserted in-
stead isXXX methods to make the Term hierarchy interface uniform.
(Alex Benini)

• Methods Struct#listXXX now enforce the list nature of the callee
structure, by throwing an UnsupportedOperationException if that
condition is not verified. (Giulio Piancastelli)

10.0.3 From Version 2.0.1 to Version 2.1

Released on 20th April 2007

• Removed ’$copy’/2. Use the ISO Standard built-in copy term/2

predicate instead. (Giulio Piancastelli)

• A subgoal under the form of a variable (e.g. X) is now executed with
the same semantics as a call/1 subgoal (e.g call(X)). In the process, a
built-in ’$call’/1 has been introduced, having the same effects as call/1
but without cut opacity. (Giulio Piancastelli)

• A warning is issued when the demonstration process encounter an
unknown predicate. (Giulio Piancastelli)

• The interaction between goal disjunction, if-then-else, and cut now
properly follows ISO standard. (Alex Benini, Giulio Piancastelli, Nathan
Finley) [SourceForge bugs 1648665, 1675798]

233

• Cut now always cuts at the right level. (Alex Benini, Giulio Pi-
ancastelli, Nathan Finley) [SourceForge bug 1659422]

• CUIConsole output has been polished to resemble more closely what
seems to be the ”standard” output amongst Prolog consoles. (Giulio
Piancastelli)

• told/0 (seen/0) does not close System.out (System.in) anymore;
tell/1 (see/1) closes the previously opened output (input) stream.
(Alex Benini, Giulio Piancastelli)

• Removed problematic assert backtrackable and retract backtrackable
flags from BasicLibrary, in order to more strictly adhere to ISO and to
simplify and improve performances on knowledge base management.
As a consequence, removed ’$restore db’/0. (Ivar Orstavik, Giulio
Piancastelli, Alex Benini)

• Redesigned the theory management subsystem and introduced a new
ClauseDatabase class with storage responsibilities. Gained perfor-
mance on large theories and overall simplification of the code. (Ivar
Orstavik)

• Prolog library predicates are now overridden by Prolog predicates
with the same indicator in user-defined theories. (Alex Benini, Ivar
Orstavik)

• Removed ’$asserta’/1 and ’$assertz’/1. Use asserta/1 and assertz/1

instead. (Ivar Orstavik, Giulio Piancastelli, Alex Benini)

• abolish/1 is now a built-in. (Ivar Orstavik, Giulio Piancastelli, Alex
Benini)

• Deprecated Term#isVar, Term#isStruct, Term#isNumber: use instanceof
instead. (Ivar Orstavik, Giulio Piancastelli, Alex Benini)

• Deprecated the package method Struct#getHashKey: use
Struct#getPredicateIndicator instead. The rename has been per-
formed to adhere more strictly to the ISO terminology. (Ivar Orstavik,
Giulio Piancastelli, Alex Benini)

• Deprecated Number#isInt, Number#isFloat, Number#isDouble,
Number#isLong: use instanceof instead. (Giulio Piancastelli)

234

• retract/1 now behaves as prescribed by the ISO Standard specifica-
tion. (Giulio Piancastelli)

• Appending two non-textual theories with more than one clause does
not result anymore in a never-ending loop. (Maurizio Cimadamore)

• Removed non-ISO operators from DefaultOperatorManager and Ba-
sicLibrary. (Giulio Piancastelli)

• Binary, octal and hexadecimal notations for integer numbers are now
recognised. (Ivar Orstavik)

• alice.util.StringInputStream removed from the codebase and re-
placed with java.io.Reader. (Ivar Orstavik)

• Tokenizer is now implemented as a java.io.StreamTokenizer. (Ivar
Orstavik)

• Terms using operators not surrounded by quotes as functors (e.g.
+(2,3)) are now recognised correctly. (Ivar Orstavik)

• Several lexical inconsistencies with ISO Standard have now been re-
solved. (Ivar Orstavik)

• Added BNF JavaDoc documentation for both Parser and Tokenizer.
(Ivar Orstavik)

• The Tokenizer class is now restricted to package access. (Ivar Orstavik)

• Changed the parser interface to an object-oriented style, and removed
current term and numeric state information. (Ivar Orstavik)

• Added parse errors as exceptions. (Ivar Orstavik)

• Deprecated alice.tuprolog.InvalidVarNameException; just use
alice.tuprolog.InvalidTermException instead. (Ivar Orstavik)

• Renamed parser interface methods: toTerm is now parseSingleTerm,
readTerm is nextTerm. (Ivar Orstavik)

• Added a Number#createNumber factory method to build Prolog num-
bers from input string. (Ivar Orstavik)

• Deprecated the Term#parse factory method to build Prolog terms
from String objects. Use Term#createTerm instead. (Ivar Orstavik)

235

• No more StackOverflowError(s) in parsing large theories, and a
three times speed-up in parsing Prolog terms. (Ivar Orstavik)

• Added a getParserError method to alice.tuprolog.TermIterator

in order to retrieve the parsing error message if the iterator fails on
recognising terms. (Ivar Orstavik)

10.0.4 From Version 2.1 to Version 2.2

Exceptions support added by Matteo Iuliani in his Master’s thesis. The core
finite state machine was redesigned, adding an ad-hoc Exception state; the
behaviour of all predicates was then tailored to the new concept, according
to the ISO standard.

10.0.5 From Version 2.2 to Version 2.3.0

Version 2.3 added a brand new GUI based on Swing instead of the previous
Thinlet library, and incorporated in tuProlog the P@J framework. The alpha
version of the ISOIOLibrary was also included.

• New ISOIOLibrary (alpha version) [Sara Sabioni]:
+ alice/tuprolog/lib/ISOIOLibrary.java

• new set seed, write base predicate:
+ alice/tuprolog/lib/IOLibrary.java

• changed the method to load/unload theories:
+ alice/tuprologx/ide/IDE.java

+ alice/tuprologx/ide/IOFileOperations.java

+ alice/tuprologx/ide/JavaIDE.java

+ alice/tuprologx/ide/JavaIOManager.java

• extending keyboard shortcuts:
+ alice/tuprologx/ide/JavaEditArea.java

• new methods for removing, resetting and setting libraries:
+ alice/tuprologx/ide/LibraryManager.java

• inclusion of P@J framework:
+ alice/tuprologx/pj/*

• migration to Swing (dropping thinlets):
+ alice/tuprologx/ide/JavaIDE.java

236

+ alice/tuprologx/ide/JavaInputField.java

- alice/tuprologx/ide/AWTFrameLauncher.java
- alice/tuprologx/ide/DotNetEditArea.java
- alice/tuprologx/ide/DotNetIDE.java
- alice/tuprologx/ide/DotNetInputField.java
- alice/tuprologx/ide/DotNetIOManager.java
- alice/tuprologx/ide/FrameLauncher.java
- alice/tuprologx/ide/img/Debugger.png
- alice/tuprologx/ide/img/Help24.png
- alice/tuprologx/ide/img/Library.png
- alice/tuprologx/ide/LibraryDialog.java
- alice/tuprologx/ide/SwingFrameLauncher.java
- alice/tuprologx/ide/ThinletConsole.java
- alice/tuprologx/ide/ThinletDebugArea.java
- alice/tuprologx/ide/ThinletStatusBar.java
- alice/tuprologx/ide/ThinletTheoryEditor.java
- alice/tuprologx/ide/ThinletToolBar.java
- alice/tuprologx/ide/xml
- alice/util/thinlet
+ alice/tuprologx/ide/AboutFrame.java

+ alice/tuprologx/ide/ConsoleDialog.java

+ alice/tuprologx/ide/Console.java

+ alice/tuprologx/ide/ConsoleManager.java

+ alice/tuprologx/ide/DebugAreaFrame.java

+ alice/tuprologx/ide/FileEditArea.java

+ alice/tuprologx/ide/FileIDE.java

+ alice/tuprologx/ide/FontDimensionHandler.java

+ alice/tuprologx/ide/GenericFrame.java

+ alice/tuprologx/ide/img/*

+ alice/tuprologx/ide/InformationToDisplayEvent.java

+ alice/tuprologx/ide/InformationToDisplayListener.java

+ alice/tuprologx/ide/LibraryDialogFrame.java

+ alice/tuprologx/ide/PrologConfigFrame.java

+ alice/tuprologx/ide/PrologFileChooser.java

+ alice/tuprologx/ide/PrologTable.java

+ alice/tuprologx/ide/StatusBar.java

+ alice/tuprologx/ide/TextAreaRenderer.java

+ alice/tuprologx/ide/TheoryEditor.java

+ alice/tuprologx/ide/TheoryTabbedPane.java

+ alice/tuprologx/ide/ToolBar.java

237

• migration from ConsoleManager to ThinletManager:
+ alice/tuprologx/ide/InputField.java

+ alice/tuprologx/ide/EngineThread.java

• adding FileEditArea interface
+ alice/tuprologx/ide/FileEditArea.java

+ alice/tuprologx/ide/JavaEditArea.java

• removing the IDE interface in JavaIDE

+ alice/tuprologx/ide/JavaIDE.java

10.0.6 From Version 2.3.0 to Version 2.3.1

Version 2.3 added indexing to improve performance. An overall code refac-
toring was also made, adding further interfaces to better separate the inner
engine classes and the outside view – also in the perspective of a better sup-
port to the Eclipse plugin. Several bugs were also corrected. An improved
GUI support from exceptions was added, providing a new Exceptions tab;
the plugin GUI was also updated accordingly.

10.0.7 From Version 2.3.1 to Version 2.4

The milestone in this step was the inclusion of the Tail Recursion Optimi-
sation, by Silvia Umiliacchi. Minor changes and bugfixes were also added.

10.0.8 From Version 2.4 to Version 2.5

Version 2.5 reflected a complete refactoring with uniform numbering scheme
among the different supported platforms: basically, this version can be seen
as the head of a new, modern development branch. For this reason, it was
also selected as the reference version for the brand new manual. Several bug
fixes were also applied.

10.0.9 From Version 2.5 to Version 2.6

Version 2.6 completed the modernising work of version 2.5, adding a brand
new class loading mechanism (based on URLCLassLoader instead of the Java
default class loader) that enables both Java libraries and Java/.NET types
to be loaded outside the tuProlog JAR/DLL, with no need of the launching
workarounds that were previously necessary. New predicates were also added
in JavaLibrary to allow the class paths to be specified, both dynamically –

238

when loading or instantiating a specific object, as in java object – and
statically – via the new set path/1/get path/1 predicates.

Some minor bugs in ISOIOLibrary have also been fixed.

10.0.10 From Version 2.6 to Version 2.7

Version 2.7, released on April 29, 2013, embeds the re-factored multi-threading-
ready architecture, which makes it possible to explicitly create new threads
to perform queries in an explicit parallelism perspective. New predicates
are also provided for explicit thread synchronization. Moreover, it adds the
new Socket library, which supports both TCP and UDP sockets, both in
synchronous and asynchronous mode.

As for the .NET version, another major addition is the new support to
.NET augmenting (Section 8.7, i.e. the so-called P@J framework in .NET),
with a brand new approach based on code generation.

Among the bug fixes, an annoying bug on the abolish/1 predicate
has been fixed (see http://sourceforge.net/p/tuprolog/bugs/62/ for
details).

Other minor changes include the addition of the serialVersionUID=1L

in Struct, Term and Var classes where it was missing, causing compilation
problems on the Android platform. Some class methods have also been
synchronized to make them work seamlessly with the new SocketLib.

10.0.11 From Version 2.7 to Version 2.7.2

Released on July 10, 2013, this version fixes several open bugs, including
the one that might cause the engine to be discarded after a query in some
situations, and adds the new SpyFrame window (courtesy Franz Beslmeisl,
with some adapting to the new architecture by Emanuele Signorin), that
enables a step-by-step animated view of the solve tree, useful for debugging
purposes.

10.0.12 From Version 2.7.2 to Version 2.8

Released on February 11, 2014, this version includes both user-visible and
under-the-hood changes.

As for the first category, it mainly adds the support for console (key-
board) input in IOLibrary/ISOIOLibrary both in the Java GUIConsole and
in the Android app.

Moreover, the extra PathList argument in JavaLibrary predicates, in-
troduced in tuProlog 2.6, has been deprecated – and therefore removed

239

the manual. The preferred (and only) way to specify the class path for
JavaLibrary predicates is now the set classpath predicate, and its dual
get classpath predicate. The above change is motivated by the user’s diffi-
culties in understanding the (perhaps counter-intuitive, though conceptually
sound) semantics of the lifetime of the classpath addition performed by such
extra argument: in fact, since that addition was only valid for the specific
operation, subsequent calls to Javalibrary methods using the created object
might easily fail, if the extra argument was not specified again. While that
semantics was coherent with the Prolog approach of avoiding side-effects
operations whenever possible, it turned out to often be a nightmare from
the practical viewpoint, since users “expected” the class path specification to
remain inherently valid for an object once it had been created. Since the per-
manent, side-effect path modification was available through set classpath,
we acknowledged that this approach was after all more “natural” for users
because of the intrinsic “permanent” idea of class path as a “system level”
specification: hance the deprecation of the extra argument in JavaLibrary
predicates and their consequent deletion from the manual.

As for the second category, several key changes have been performed in
the engine for bug fixing purposes. In particular, the erroneous behaviour of
the tuProlog engine with assert/retract, that dated back to version 1.1, has
been finally fixed. Major changes are also under study in order to address
another long-annoying bug regarding setof/bagof: due to both their com-
plexity and the consequent development time and need for comprehensive
test, such changes have not been included in this version – they will likely
appear sometime in the future.

10.0.13 From Version 2.8 to Version 2.9

Released on July 4, 2014, this version is supposed to be the last version
compatible with Java 7. The next major version, adding the support for
lambda expressions, will commit to Java 8 only.

For this reason, this version aims to provide a stable environment, a)
completing the pending bugfixes, with special regards to the old annoy-
ing bugs regarding the behaviour of setof, bagof, of predicate disjunction
(’;’); b) improving and completing the management of class loading in both
JavaSE and Android editions, enabling external resources to be loaded on
the Android platform, too; c) improving the input from the standard input
stream via keyboard, which is now integrated in an ad-hoc tab in the IDE; d)
adding methods to explicitly retrieve and set the standard I/O streams, in
compliance with the Java Specification Request 233 regarding the scripting

240

engine interface.
More precisely:

• user-defined libraries and classes can now be loaded also in the Android
version – previously, Android could only load pre-defined classes and
libraries, due to the different loading mechanism used by this platform
(one single classes.dex file inside tha app); improved screenshots have
been added in section 3.4;

• the new input tab is now available in Java and .NET versions, replacing
the old-fashioned input dialog (support for the Eclipse plugin will be
released later this year);

• the setof and bagof primitives, previously flawed (bug [4]) finally
behave as expected, retaining variable bindings where and when ex-
pected. Predicate disjunction now behaves correctly (bug [5]). The
bug causing the functor/3 predicate to enter an endless loop when
the first argument was unbound and the second referred to the term
itself has been fixed (bug [3]) The behaviour has been extensively ver-
ified onto an International conformance test suite [2].

10.0.14 From Version 2.9 to Version 2.9.2

Released on February 2, 2015, this minor version, still compatible with Java
7, includes some further bug fixes, adopts a new editor in the Java/.NET
GUI, makes the Visual Studio code generators for P@.NET compatible with
Visual Studio 2012/13 and, as for as the internal project structure is con-
cerned, adopts a new acceptance test suite based on the Concordion frame-
work, instead of the old-fashioned FIT framework.

10.1 Acknowledgments

The following people deserve a big thanks for their help and support in
tuProlog development:

• Previous manuals: Andrea Omicini, Alessandro Ricci

• Original 1.x versions: Vladimiro Toschi, Andrea Omicini

• Original 2.0, 2.1: Alessandro Ricci, Alex Benini, Giulio Piancastelli,
Ivar Orstavik

241

• Original 2.1.1: Alex Benini, Giulio Piancastelli, Ivar Orstavik

• Exceptions support in 2.2: Matteo Iuliani

• New GUI in 2.3.0: Giulio Piancastelli, Maurizio Cimadamore, Juri
Luca De Coi, George S. Cowan, Lorenzo Zoffoli

• Performance gain in 2.3.1: Michael Gattavecchia, Paolo Contessi, Lorenzo
Zoffoli

• New GUI in 2.3.1 Eclipse plugin and redesign: Michele Castagna

• Refactoring in 2.4.0 RC1:

• Refactoring in 2.4.0 RC2: Alessandro Montanari

• Tail recursion optimisation in 2.4.0 RC5: Silvia Umiliacchi

• Mouse wheel, Mac-OS shortcuts, new project structure in 2.4.1: Vale-
rio Pipolo, Alessandro Montanari

• Refactoring in 2.4.0 RC5: Alessandro Montanari

• Refactoring and release in 2.5.x: Alessandro Montanari, Enrico Denti

• New class loading mechanism and register/1 predicate in 2.6.x: Michele
Mannino

• New .NET augmenting (P@J for .NET) via Visual Studio code gener-
ators in 2.7: Fabio Gravina

• New SocketLib in 2.7: Adelina Benedetti

• New Multi-threading architecture and new ThreadLib in 2.7: Eleonora
Cau

• Support for relative paths for the consult predicate in 2.7: Tobias
Haupenthal

• Extensive bug fixing and GUI enhancements in 2.7.2: Emanuele Sig-
norin

• New SpyFrame in 2.7.2: original code by Franz Beslmeisl (2012)

• Support for keyboard input in IOLibrary/ISOIOLibrary also on the
GUIConsole and Android app in 2.8.0: Mirco Mastrovito (2013)

242

• Extensive bug fix in the engine state machine, including assert/retract
handling in 2.8.0: Roberta Calegari (2013)

• Extensive bug fix in the engine state machine, for setof and bagof in
2.9.0: Roberta Calegari (2014)

• Further bug fixing (see issues # 20, 14, 16 on Google Code), and other
minor issues: Roberta Calegari (2014)

• New input tab for keyboard input in 2.9.0: Matteo Librenti (2014)

• Support for the theory/class loading in Android in 2.9.0: Alessio Mer-
curio (2014)

• Concordion test suite: Marcello Colameo (2014)

• code generators for Visual Studio 2012/13: Michele Francesco Di Lella
(2014)

• new Java IDE, exploiting the RSyntaxTextArea open source compo-
nent from Fifesoft http://fifesoft.com/rsyntaxtextarea/: Andrzej Ol-
szak (2015)

243

Version IDE ExceptionsCore size JAR size Notes
2.1.1 thinlet no 113K 316K –
2.2 thinlet yes 159K 437K enhanced core with exceptions support
2.3.0α Swing yes – 621K

(+600K
javassist)

new Swing GUI, P@J framework,
set seed predicate

2.3.1β Swing yes – 693K
(+600K
javassist)

indexing (+20% performance), refac-
toring getTerm

2.4.0 RC1 Swing yes – 693K
(+600K
javassist)

improved GUI with exceptions support,
improved CUI handling exceptions cor-
rectly, unification bug fixed, code refac-
toring using generics, overall refactor-
ing introducing new interfaces and fac-
tories, to better separate engine from
upper layers.

2.4.0 RC2 Swing yes – 693K
(+600K
javassist)

as above + bugfix correction in index-
ing and operator handling, other minor
bugfixes

2.4.0 RC5 Swing yes – 693K
(+600K
javassist)

as above + Tail Recursion Optimisation

2.5 Swing yes – 693K
(+600K
javassist)

several bug fixes, uniform cross-
platform behaviour and numbering
scheme

2.6 Swing yes – 693K
(+600K
javassist)

new class loader to overcome previous
limitations; new register/1 predicate

2.7 Swing yes – 504K
(+600K
javassist)

new .NET augmenting (P@J for .NET)
via Visual Studio code generators,
SocketLib, new multi-threading archi-
tecture and ThreadLib, support for rel-
ative paths in the consult predicate

2.7.2 Swing yes – 504K
(+600K
javassist)

many bug fixes, new SpyFrame

2.8 Swing yes – 537K
(+600K
javassist)

classpath issues, many bugfixes, first
keyboard input support in GUI

2.9 Swing yes – 537K
(+600K
javassist)

setof/bagof bug fixes, better class load-
ing in Android, keyboard input sup-
port via input tab, extensive ISO-
compliance testing

2.9.2 Swing yes – 537K
(+600K
javassist)

further bug fixes, new editor in
Java/.NET GUI, Visual Studio code
generators for P@.NET now compatible
with Visual Studio 2012/13, and new
acceptance test suite based on the Con-
cordion framework instead of the old-
fashioned FIT framework

Table 10.1: Version comparison

244

Bibliography

[1] The IKVM project. http://www.ikvm.net.

[2] Tests of conformance to the prolog iso standard.
http://www.univ-orleans.fr/lifo/software/stdprolog/

suites.html.

[3] tuprolog issues, bug #14. https://code.google.com/p/tuprolog/

issues/detail?id=14.

[4] tuprolog issues, bug #16. https://code.google.com/p/tuprolog/

issues/detail?id=16.

[5] tuprolog issues, bug #20. https://code.google.com/p/tuprolog/

issues/detail?id=20.

[6] Information technology – Programming languages – Prolog – Part 1:
General core. International Standard ISO/IEC 132111, International
Organization for Standardization, 1995.

[7] Ivan Bratko. Prolog Programming for Artificial Intelligence. Addison-
Wesley, 2000.

[8] Maurizio Cimadamore and Mirko Viroli. Integrating Java and Prolog
through generic methods and type inference. In Proc. ACM SAC 2008,
pages 198–205, 2008.

[9] Enrico Denti and Andrea Omicini. LuCe: A tuple-based coordination
infrastructure for Prolog and Java agents. Autonomous Agents and
Multi-Agent Systems, 4(1-2):139–141, March-June 2001.

[10] Andrea Omicini and Enrico Denti. From tuple spaces to tuple centres.
Science of Computer Programming, 41(3):277–294, November 2001.

245

[11] Andrea Omicini and Franco Zambonelli. Coordination for internet ap-
plication development. Autonomous Agents and Multi-Agent Systems,
2(3):251–269, 1999.

[12] Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press,
1994.

246

	1 What is tuProlog
	2 Installing tuProlog
	2.1 Installation in Java
	2.2 Installation in .NET
	2.3 Installation in Android
	2.4 Installation in Eclipse

	3 Getting Started
	3.1 tuProlog for the Prolog User
	3.1.1 Editing theories
	3.1.2 Solving goals
	3.1.3 Debugging support
	3.1.4 Dynamic library management
	3.1.5 Input from console

	3.2 tuProlog for the Java Developer
	3.3 tuProlog for the .NET Developer
	3.4 tuProlog for the Android User
	3.4.1 Class loading issues: tuProlog 2.9 news

	4 tuProlog Basics
	4.1 Predicate categories
	4.2 Syntax
	4.3 Engine configurability
	4.4 Exception support
	4.4.1 Error classification

	4.5 Built-in predicates
	4.5.1 Control management
	4.5.2 Term unification and management
	4.5.3 Knowledge base management
	4.5.4 Operator and flag management
	4.5.5 Library management
	4.5.6 Directives

	5 tuProlog Libraries
	5.1 BasicLibrary
	5.1.1 Predicates
	5.1.1.1 Type Testing
	5.1.1.2 Term Creation, Decomposition and Unification
	5.1.1.3 Occurs Check
	5.1.1.4 Expression and Term Comparison
	5.1.1.5 Finding Solutions
	5.1.1.6 Control Management
	5.1.1.7 Clause Retrieval, Creation and Destruction
	5.1.1.8 Operator Management
	5.1.1.9 Flag Management
	5.1.1.10 Actions on Theories and Engines
	5.1.1.11 Spy Events
	5.1.1.12 Auxiliary predicates

	5.1.2 Functors
	5.1.3 Operators

	5.2 ISOLibrary
	5.2.1 Predicates
	5.2.1.1 Type Testing
	5.2.1.2 Atoms Processing

	5.2.2 Functors
	5.2.3 Operators
	5.2.4 Flags

	5.3 IOLibrary
	5.3.1 Predicates
	5.3.1.1 General I/O
	5.3.1.2 Helper Predicates
	5.3.1.3 Random Generation of Numbers

	5.4 ThreadLibrary
	5.4.1 Predicates
	5.4.1.1 Creating and deleting threads
	5.4.1.2 Inter-thread communication via queues
	5.4.1.3 Thread synchronization via mutual exclusion

	5.4.2 Examples
	5.4.2.1 Factorial of two numbers
	5.4.2.2 Father and child communicating via a public queue
	5.4.2.3 Father and children communicating via a private queue
	5.4.2.4 Synchronizing thread interactions
	5.4.2.5 Flattening and manipulating lists

	5.5 DCGLibrary
	5.5.1 Predicates
	5.5.2 Operators

	5.6 ISOIOLibrary
	5.6.1 Predicates
	5.6.2 Options

	5.7 SocketLibrary
	5.7.1 Predicates
	5.7.2 Operators
	5.7.3 Use from the Java side: term hierarchy extension

	6 tuProlog Exceptions
	6.1 Exceptions in ISO Prolog
	6.1.1 Error classification

	6.2 Exceptions in tuProlog
	6.2.1 Examples
	6.2.2 Handling Java/.NET Exceptions from tuProlog

	7 Multi-paradigm programming in Prolog and Java
	7.1 Using Java from Prolog: JavaLibrary
	7.1.1 Type mapping
	7.1.2 Creating and accessing objects: an overview
	7.1.2.1 Examples
	7.1.2.2 Registering object bindings

	7.1.3 Predicates
	7.1.3.1 Object creation, class compilation and method invocation
	7.1.3.2 Array management
	7.1.3.3 Class path handling predicates
	7.1.3.4 Helper predicates

	7.1.4 Functors
	7.1.5 Operators
	7.1.6 Examples
	7.1.6.1 RMI Connection to a Remote Object
	7.1.6.2 A Swing GUI
	7.1.6.3 Database access via JDBC
	7.1.6.4 Dynamic compilation

	7.1.7 Handling Java Exceptions
	7.1.7.1 Java exception examples

	7.2 Using Prolog from Java: the Java API
	7.2.1 A Taxonomy of Prolog types in Java
	7.2.1.1 Further notes about Terms

	7.2.2 Prolog engines, theories and libraries
	7.2.2.1 Further notes about Prolog engines

	7.2.3 Examples
	7.2.3.1 Appending lists
	7.2.3.2 Exploiting a theory from clause list
	7.2.3.3 A console-based Prolog interpreter

	7.2.4 Support to relative paths in consulting Prolog sub-files
	7.2.5 Registering object bindings
	7.2.6 Capturing the Prolog output in Java

	7.3 Augmenting Prolog via Java:developing new libraries
	7.3.1 Syntactic conventions
	7.3.1.1 Capturing exceptions raised in libraries
	7.3.1.2 Capturing the Java output in Prolog
	7.3.1.3 Naming issues

	7.3.2 Hybrid Java+Prolog libraries
	7.3.3 Library loading issues
	7.3.4 Library Name

	7.4 Augmenting Java via Prolog:the P@J framework
	7.4.1 Term taxonomy
	7.4.2 Examples

	8 Multi-paradigm programming in Prolog and .NET
	8.1 A bit of history
	8.1.1 tuProlog 2.1 and CSharpLibrary
	8.1.2 tuProlog 2.1.3: CSharpLibrary + exceptions
	8.1.3 tuProlog 2.2 and CLILibrary

	8.2 IKVM Basics
	8.2.1 Dynamic vs. Static modality
	8.2.2 Class loading issues
	8.2.3 The other way: writing .NET applications in Java

	8.3 tuProlog.NET now
	8.3.1 Highlights

	8.4 Using .NET from Prolog: OOLibrary
	8.4.0.1 Motivation
	8.4.0.2 Language Conventions
	8.4.0.3 OOLibrary: predicates

	8.4.1 Examples
	8.4.2 Handling .NET Exceptions

	8.5 Using Prolog from .NET: the API
	8.6 Augmenting Prolog via .NET:developing new libraries
	8.6.1 Capturing exceptions raised in .NET libraries
	8.6.2 Capturing the .NET output in Prolog

	8.7 Augmenting .NET via Prolog:the P@J framework revised
	8.7.1 P@.NET via code generators

	8.8 Putting everything together
	8.8.1 Example: Multi-language TicTacToe

	9 Multi-paradigm programming in Prolog and Android
	9.1 Class path issues

	10 Version history
	10.0.1 Version 2.0
	10.0.2 From Version 2.0 to Version 2.0.1
	10.0.3 From Version 2.0.1 to Version 2.1
	10.0.4 From Version 2.1 to Version 2.2
	10.0.5 From Version 2.2 to Version 2.3.0
	10.0.6 From Version 2.3.0 to Version 2.3.1
	10.0.7 From Version 2.3.1 to Version 2.4
	10.0.8 From Version 2.4 to Version 2.5
	10.0.9 From Version 2.5 to Version 2.6
	10.0.10 From Version 2.6 to Version 2.7
	10.0.11 From Version 2.7 to Version 2.7.2
	10.0.12 From Version 2.7.2 to Version 2.8
	10.0.13 From Version 2.8 to Version 2.9
	10.0.14 From Version 2.9 to Version 2.9.2

	10.1 Acknowledgments

