1. windwiny
  2. wxPython

Source

wxPython / wx / lib / ogl / _oglmisc.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# -*- coding: iso-8859-1 -*-
#----------------------------------------------------------------------------
# Name:         oglmisc.py
# Purpose:      Miscellaneous OGL support functions
#
# Author:       Pierre Hjälm (from C++ original by Julian Smart)
#
# Created:      2004-05-08
# RCS-ID:       $Id: _oglmisc.py 29265 2004-09-23 00:43:47Z RD $
# Copyright:    (c) 2004 Pierre Hjälm - 1998 Julian Smart
# Licence:      wxWindows license
#----------------------------------------------------------------------------

import math

import wx

# Control point types
# Rectangle and most other shapes
CONTROL_POINT_VERTICAL = 1
CONTROL_POINT_HORIZONTAL = 2
CONTROL_POINT_DIAGONAL = 3

# Line
CONTROL_POINT_ENDPOINT_TO = 4
CONTROL_POINT_ENDPOINT_FROM = 5
CONTROL_POINT_LINE = 6

# Types of formatting: can be combined in a bit list
FORMAT_NONE = 0             # Left justification
FORMAT_CENTRE_HORIZ = 1     # Centre horizontally
FORMAT_CENTRE_VERT = 2      # Centre vertically
FORMAT_SIZE_TO_CONTENTS = 4 # Resize shape to contents

# Attachment modes
ATTACHMENT_MODE_NONE, ATTACHMENT_MODE_EDGE, ATTACHMENT_MODE_BRANCHING = 0, 1, 2

# Shadow mode
SHADOW_NONE, SHADOW_LEFT, SHADOW_RIGHT = 0, 1, 2

OP_CLICK_LEFT, OP_CLICK_RIGHT, OP_DRAG_LEFT, OP_DRAG_RIGHT = 1, 2, 4, 8
OP_ALL = OP_CLICK_LEFT | OP_CLICK_RIGHT | OP_DRAG_LEFT | OP_DRAG_RIGHT

# Sub-modes for branching attachment mode
BRANCHING_ATTACHMENT_NORMAL = 1
BRANCHING_ATTACHMENT_BLOB = 2

# logical function to use when drawing rubberband boxes, etc.
OGLRBLF = wx.INVERT

CONTROL_POINT_SIZE = 6

# Types of arrowhead
# (i) Built-in
ARROW_HOLLOW_CIRCLE   = 1
ARROW_FILLED_CIRCLE   = 2
ARROW_ARROW           = 3
ARROW_SINGLE_OBLIQUE  = 4
ARROW_DOUBLE_OBLIQUE  = 5
# (ii) Custom
ARROW_METAFILE        = 20

# Position of arrow on line
ARROW_POSITION_START  = 0
ARROW_POSITION_END    = 1
ARROW_POSITION_MIDDLE = 2

# Line alignment flags
# Vertical by default
LINE_ALIGNMENT_HORIZ              = 1
LINE_ALIGNMENT_VERT               = 0
LINE_ALIGNMENT_TO_NEXT_HANDLE     = 2
LINE_ALIGNMENT_NONE               = 0



# Format a string to a list of strings that fit in the given box.
# Interpret %n and 10 or 13 as a new line.
def FormatText(dc, text, width, height, formatMode):
    i = 0
    word = ""
    word_list = []
    end_word = False
    new_line = False
    while i < len(text):
        if text[i] == "%":
            i += 1
            if i == len(text):
                word += "%"
            else:
                if text[i] == "n":
                    new_line = True
                    end_word = True
                    i += 1
                else:
                    word += "%" + text[i]
                    i += 1
        elif text[i] in ["\012","\015"]:
            new_line = True
            end_word = True
            i += 1
        elif text[i] == " ":
            end_word = True
            i += 1
        else:
            word += text[i]
            i += 1

        if i == len(text):
            end_word = True

        if end_word:
            word_list.append(word)
            word = ""
            end_word = False
        if new_line:
            word_list.append(None)
            new_line = False

    # Now, make a list of strings which can fit in the box
    string_list = []
    buffer = ""
    for s in word_list:
        oldBuffer = buffer
        if s is None:
            # FORCE NEW LINE
            if len(buffer) > 0:
                string_list.append(buffer)
            buffer = ""
        else:
            if len(buffer):
                buffer += " "
            buffer += s
            x, y = dc.GetTextExtent(buffer)

            # Don't fit within the bounding box if we're fitting
            # shape to contents
            if (x > width) and not (formatMode & FORMAT_SIZE_TO_CONTENTS):
                # Deal with first word being wider than box
                if len(oldBuffer):
                    string_list.append(oldBuffer)
                buffer = s
    if len(buffer):
        string_list.append(buffer)

    return string_list



def GetCentredTextExtent(dc, text_list, xpos = 0, ypos = 0, width = 0, height = 0):
    if not text_list:
        return 0, 0

    max_width = 0
    for line in text_list:
        current_width, char_height = dc.GetTextExtent(line.GetText())
        if current_width > max_width:
            max_width = current_width

    return max_width, len(text_list) * char_height



def CentreText(dc, text_list, xpos, ypos, width, height, formatMode):
    if not text_list:
        return

    # First, get maximum dimensions of box enclosing text
    char_height = 0
    max_width = 0
    current_width = 0

    # Store text extents for speed
    widths = []
    for line in text_list:
        current_width, char_height = dc.GetTextExtent(line.GetText())
        widths.append(current_width)
        if current_width > max_width:
            max_width = current_width

    max_height = len(text_list) * char_height

    if formatMode & FORMAT_CENTRE_VERT:
        if max_height < height:
            yoffset = ypos - height / 2.0 + (height - max_height) / 2.0
        else:
            yoffset = ypos - height / 2.0
        yOffset = ypos
    else:
        yoffset = 0.0
        yOffset = 0.0

    if formatMode & FORMAT_CENTRE_HORIZ:
        xoffset = xpos - width / 2.0
        xOffset = xpos
    else:
        xoffset = 0.0
        xOffset = 0.0

    for i, line in enumerate(text_list):
        if formatMode & FORMAT_CENTRE_HORIZ and widths[i] < width:
            x = (width - widths[i]) / 2.0 + xoffset
        else:
            x = xoffset
        y = i * char_height + yoffset

        line.SetX(x - xOffset)
        line.SetY(y - yOffset)
        


def DrawFormattedText(dc, text_list, xpos, ypos, width, height, formatMode):
    if formatMode & FORMAT_CENTRE_HORIZ:
        xoffset = xpos
    else:
        xoffset = xpos - width / 2.0

    if formatMode & FORMAT_CENTRE_VERT:
        yoffset = ypos
    else:
        yoffset = ypos - height / 2.0

    # +1 to allow for rounding errors
    dc.SetClippingRegion(xpos - width / 2.0, ypos - height / 2.0, width + 1, height + 1)

    for line in text_list:
        dc.DrawText(line.GetText(), xoffset + line.GetX(), yoffset + line.GetY())

    dc.DestroyClippingRegion()



def RoughlyEqual(val1, val2, tol = 0.00001):
    return val1 < (val2 + tol) and val1 > (val2 - tol) and \
           val2 < (val1 + tol) and val2 > (val1 - tol)



def FindEndForBox(width, height, x1, y1, x2, y2):
    xvec = [x1 - width / 2.0, x1 - width / 2.0, x1 + width / 2.0, x1 + width / 2.0, x1 - width / 2.0]
    yvec = [y1 - height / 2.0, y1 + height / 2.0, y1 + height / 2.0, y1 - height / 2.0, y1 - height / 2.0]

    return FindEndForPolyline(xvec, yvec, x2, y2, x1, y1)



def CheckLineIntersection(x1, y1, x2, y2, x3, y3, x4, y4):
    denominator_term = (y4 - y3) * (x2 - x1) - (y2 - y1) * (x4 - x3)
    numerator_term = (x3 - x1) * (y4 - y3) + (x4 - x3) * (y1 - y3)

    length_ratio = 1.0
    k_line = 1.0

    # Check for parallel lines
    if denominator_term < 0.005 and denominator_term > -0.005:
        line_constant = -1.0
    else:
        line_constant = float(numerator_term) / denominator_term

    # Check for intersection
    if line_constant < 1.0 and line_constant > 0.0:
        # Now must check that other line hits
        if (y4 - y3) < 0.005 and (y4 - y3) > -0.005:
            k_line = (x1 - x3 + line_constant * (x2 - x1)) / (x4 - x3)
        else:
            k_line = (y1 - y3 + line_constant * (y2 - y1)) / (y4 - y3)
        if k_line >= 0 and k_line < 1:
            length_ratio = line_constant
        else:
            k_line = 1

    return length_ratio, k_line



def FindEndForPolyline(xvec, yvec, x1, y1, x2, y2):
    lastx = xvec[0]
    lasty = yvec[0]

    min_ratio = 1.0

    for i in range(1, len(xvec)):
        line_ratio, other_ratio = CheckLineIntersection(x1, y1, x2, y2, lastx, lasty, xvec[i], yvec[i])
        lastx = xvec[i]
        lasty = yvec[i]

        if line_ratio < min_ratio:
            min_ratio = line_ratio

    # Do last (implicit) line if last and first doubles are not identical
    if not (xvec[0] == lastx and yvec[0] == lasty):
        line_ratio, other_ratio = CheckLineIntersection(x1, y1, x2, y2, lastx, lasty, xvec[0], yvec[0])
        if line_ratio < min_ratio:
            min_ratio = line_ratio

    return x1 + (x2 - x1) * min_ratio, y1 + (y2 - y1) * min_ratio



def PolylineHitTest(xvec, yvec, x1, y1, x2, y2):
    isAHit = False
    lastx = xvec[0]
    lasty = yvec[0]

    min_ratio = 1.0

    for i in range(1, len(xvec)):
        line_ratio, other_ratio = CheckLineIntersection(x1, y1, x2, y2, lastx, lasty, xvec[i], yvec[i])
        if line_ratio != 1.0:
            isAHit = True
        lastx = xvec[i]
        lasty = yvec[i]

        if line_ratio < min_ratio:
            min_ratio = line_ratio

    # Do last (implicit) line if last and first doubles are not identical
    if not (xvec[0] == lastx and yvec[0] == lasty):
        line_ratio, other_ratio = CheckLineIntersection(x1, y1, x2, y2, lastx, lasty, xvec[0], yvec[0])
        if line_ratio != 1.0:
            isAHit = True

    return isAHit



def GraphicsStraightenLine(point1, point2):
    dx = point2[0] - point1[0]
    dy = point2[1] - point1[1]

    if dx == 0:
        return
    elif abs(float(dy) / dx) > 1:
        point2[0] = point1[0]
    else:
        point2[1] = point1[1]



def GetPointOnLine(x1, y1, x2, y2, length):
    l = math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))
    if l < 0.01:
        l = 0.01

    i_bar = (x2 - x1) / l
    j_bar = (y2 - y1) / l

    return -length * i_bar + x2, -length * j_bar + y2



def GetArrowPoints(x1, y1, x2, y2, length, width):
    l = math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))

    if l < 0.01:
        l = 0.01

    i_bar = (x2 - x1) / l
    j_bar = (y2 - y1) / l
    
    x3 = -length * i_bar + x2
    y3 = -length * j_bar + y2

    return x2, y2, width * -j_bar + x3, width * i_bar + y3, -width * -j_bar + x3, -width * i_bar + y3



def DrawArcToEllipse(x1, y1, width1, height1, x2, y2, x3, y3):
    a1 = width1 / 2.0
    b1 = height1 / 2.0

    # Check that x2 != x3
    if abs(x2 - x3) < 0.05:
        x4 = x2
        if y3 > y2:
            y4 = y1 - math.sqrt((b1 * b1 - (((x2 - x1) * (x2 - x1)) * (b1 * b1) / (a1 * a1))))
        else:
            y4 = y1 + math.sqrt((b1 * b1 - (((x2 - x1) * (x2 - x1)) * (b1 * b1) / (a1 * a1))))
        return x4, y4

    # Calculate the x and y coordinates of the point where arc intersects ellipse
    A = (1 / (a1 * a1))
    B = ((y3 - y2) * (y3 - y2)) / ((x3 - x2) * (x3 - x2) * b1 * b1)
    C = (2 * (y3 - y2) * (y2 - y1)) / ((x3 - x2) * b1 * b1)
    D = ((y2 - y1) * (y2 - y1)) / (b1 * b1)
    E = (A + B)
    F = (C - (2 * A * x1) - (2 * B * x2))
    G = ((A * x1 * x1) + (B * x2 * x2) - (C * x2) + D - 1)
    H = (float(y3 - y2) / (x3 - x2))
    K = ((F * F) - (4 * E * G))

    if K >= 0:
        # In this case the line intersects the ellipse, so calculate intersection
        if x2 >= x1:
            ellipse1_x = ((F * -1) + math.sqrt(K)) / (2 * E)
            ellipse1_y = ((H * (ellipse1_x - x2)) + y2)
        else:
            ellipse1_x = (((F * -1) - math.sqrt(K)) / (2 * E))
            ellipse1_y = ((H * (ellipse1_x - x2)) + y2)
    else:
        # in this case, arc does not intersect ellipse, so just draw arc
        ellipse1_x = x3
        ellipse1_y = y3

    return ellipse1_x, ellipse1_y



def FindEndForCircle(radius, x1, y1, x2, y2):
    H = math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))

    if H == 0:
        return x1, y1
    else:
        return radius * (x2 - x1) / H + x1, radius * (y2 - y1) / H + y1