Source

xemacs-21.4 / src / elhash.c

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
/* Implementation of the hash table lisp object type.
   Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
   Copyright (C) 1995, 1996 Ben Wing.
   Copyright (C) 1997 Free Software Foundation, Inc.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCNTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Synched up with: Not in FSF. */

#include <config.h>
#include "lisp.h"
#include "bytecode.h"
#include "elhash.h"

Lisp_Object Qhash_tablep;
static Lisp_Object Qhashtable, Qhash_table;
static Lisp_Object Qweakness, Qvalue, Qkey_or_value, Qkey_and_value;
static Lisp_Object Vall_weak_hash_tables;
static Lisp_Object Qrehash_size, Qrehash_threshold;
static Lisp_Object Q_size, Q_test, Q_weakness, Q_rehash_size, Q_rehash_threshold;

/* obsolete as of 19990901 in xemacs-21.2 */
static Lisp_Object Qweak, Qkey_weak, Qvalue_weak, Qkey_or_value_weak;
static Lisp_Object Qnon_weak, Q_type;

typedef struct hentry
{
  Lisp_Object key;
  Lisp_Object value;
} hentry;

struct Lisp_Hash_Table
{
  struct lcrecord_header header;
  size_t size;
  size_t count;
  size_t rehash_count;
  double rehash_size;
  double rehash_threshold;
  size_t golden_ratio;
  hash_table_hash_function_t hash_function;
  hash_table_test_function_t test_function;
  hentry *hentries;
  enum hash_table_weakness weakness;
  Lisp_Object next_weak;     /* Used to chain together all of the weak
			        hash tables.  Don't mark through this. */
};

#define HENTRY_CLEAR_P(hentry) ((*(EMACS_UINT*)(&((hentry)->key))) == 0)
#define CLEAR_HENTRY(hentry)   \
  ((*(EMACS_UINT*)(&((hentry)->key)))   = 0, \
   (*(EMACS_UINT*)(&((hentry)->value))) = 0)

#define HASH_TABLE_DEFAULT_SIZE 16
#define HASH_TABLE_DEFAULT_REHASH_SIZE 1.3
#define HASH_TABLE_MIN_SIZE 10

#define HASH_CODE(key, ht)						\
  ((((ht)->hash_function ? (ht)->hash_function (key) : LISP_HASH (key))	\
    * (ht)->golden_ratio)						\
   % (ht)->size)

#define KEYS_EQUAL_P(key1, key2, testfun) \
  (EQ (key1, key2) || ((testfun) && (testfun) (key1, key2)))

#define LINEAR_PROBING_LOOP(probe, entries, size)		\
  for (;							\
       !HENTRY_CLEAR_P (probe) ||				\
	 (probe == entries + size ?				\
	  (probe = entries, !HENTRY_CLEAR_P (probe)) : 0);	\
       probe++)

#ifndef ERROR_CHECK_HASH_TABLE
# ifdef ERROR_CHECK_TYPECHECK
#  define ERROR_CHECK_HASH_TABLE 1
# else
#  define ERROR_CHECK_HASH_TABLE 0
# endif
#endif

#if ERROR_CHECK_HASH_TABLE
static void
check_hash_table_invariants (Lisp_Hash_Table *ht)
{
  assert (ht->count < ht->size);
  assert (ht->count <= ht->rehash_count);
  assert (ht->rehash_count < ht->size);
  assert ((double) ht->count * ht->rehash_threshold - 1 <= (double) ht->rehash_count);
  assert (HENTRY_CLEAR_P (ht->hentries + ht->size));
}
#else
#define check_hash_table_invariants(ht)
#endif

/* We use linear probing instead of double hashing, despite its lack
   of blessing by Knuth and company, because, as a result of the
   increasing discrepancy between CPU speeds and memory speeds, cache
   behavior is becoming increasingly important, e.g:

   For a trivial loop, the penalty for non-sequential access of an array is:
    - a factor of 3-4 on Pentium Pro 200 Mhz
    - a factor of 10  on Ultrasparc  300 Mhz */

/* Return a suitable size for a hash table, with at least SIZE slots. */
static size_t
hash_table_size (size_t requested_size)
{
  /* Return some prime near, but greater than or equal to, SIZE.
     Decades from the time of writing, someone will have a system large
     enough that the list below will be too short... */
  static const size_t primes [] =
  {
    19, 29, 41, 59, 79, 107, 149, 197, 263, 347, 457, 599, 787, 1031,
    1361, 1777, 2333, 3037, 3967, 5167, 6719, 8737, 11369, 14783,
    19219, 24989, 32491, 42257, 54941, 71429, 92861, 120721, 156941,
    204047, 265271, 344857, 448321, 582821, 757693, 985003, 1280519,
    1664681, 2164111, 2813353, 3657361, 4754591, 6180989, 8035301,
    10445899, 13579681, 17653589, 22949669, 29834603, 38784989,
    50420551, 65546729, 85210757, 110774011, 144006217, 187208107,
    243370577, 316381771, 411296309, 534685237, 695090819, 903618083,
    1174703521, 1527114613, 1985248999, 2580823717UL, 3355070839UL
  };
  /* We've heard of binary search. */
  int low, high;
  for (low = 0, high = countof (primes) - 1; high - low > 1;)
    {
      /* Loop Invariant: size < primes [high] */
      int mid = (low + high) / 2;
      if (primes [mid] < requested_size)
	low = mid;
      else
	high = mid;
    }
  return primes [high];
}


#if 0 /* I don't think these are needed any more.
	 If using the general lisp_object_equal_*() functions
	 causes efficiency problems, these can be resurrected. --ben */
/* equality and hash functions for Lisp strings */
int
lisp_string_equal (Lisp_Object str1, Lisp_Object str2)
{
  /* This is wrong anyway.  You can't use strcmp() on Lisp strings,
     because they can contain zero characters.  */
  return !strcmp ((char *) XSTRING_DATA (str1), (char *) XSTRING_DATA (str2));
}

static hashcode_t
lisp_string_hash (Lisp_Object obj)
{
  return hash_string (XSTRING_DATA (str), XSTRING_LENGTH (str));
}

#endif /* 0 */

static int
lisp_object_eql_equal (Lisp_Object obj1, Lisp_Object obj2)
{
  return EQ (obj1, obj2) || (FLOATP (obj1) && internal_equal (obj1, obj2, 0));
}

static hashcode_t
lisp_object_eql_hash (Lisp_Object obj)
{
  return FLOATP (obj) ? internal_hash (obj, 0) : LISP_HASH (obj);
}

static int
lisp_object_equal_equal (Lisp_Object obj1, Lisp_Object obj2)
{
  return internal_equal (obj1, obj2, 0);
}

static hashcode_t
lisp_object_equal_hash (Lisp_Object obj)
{
  return internal_hash (obj, 0);
}


static Lisp_Object
mark_hash_table (Lisp_Object obj)
{
  Lisp_Hash_Table *ht = XHASH_TABLE (obj);

  /* If the hash table is weak, we don't want to mark the keys and
     values (we scan over them after everything else has been marked,
     and mark or remove them as necessary).  */
  if (ht->weakness == HASH_TABLE_NON_WEAK)
    {
      hentry *e, *sentinel;

      for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
	if (!HENTRY_CLEAR_P (e))
	  {
	    mark_object (e->key);
	    mark_object (e->value);
	  }
    }
  return Qnil;
}

/* Equality of hash tables.  Two hash tables are equal when they are of
   the same weakness and test function, they have the same number of
   elements, and for each key in the hash table, the values are `equal'.

   This is similar to Common Lisp `equalp' of hash tables, with the
   difference that CL requires the keys to be compared with the test
   function, which we don't do.  Doing that would require consing, and
   consing is a bad idea in `equal'.  Anyway, our method should provide
   the same result -- if the keys are not equal according to the test
   function, then Fgethash() in hash_table_equal_mapper() will fail.  */
static int
hash_table_equal (Lisp_Object hash_table1, Lisp_Object hash_table2, int depth)
{
  Lisp_Hash_Table *ht1 = XHASH_TABLE (hash_table1);
  Lisp_Hash_Table *ht2 = XHASH_TABLE (hash_table2);
  hentry *e, *sentinel;

  if ((ht1->test_function != ht2->test_function) ||
      (ht1->weakness      != ht2->weakness)      ||
      (ht1->count         != ht2->count))
    return 0;

  depth++;

  for (e = ht1->hentries, sentinel = e + ht1->size; e < sentinel; e++)
    if (!HENTRY_CLEAR_P (e))
      /* Look up the key in the other hash table, and compare the values. */
      {
	Lisp_Object value_in_other = Fgethash (e->key, hash_table2, Qunbound);
	if (UNBOUNDP (value_in_other) ||
	    !internal_equal (e->value, value_in_other, depth))
	  return 0;		/* Give up */
      }

  return 1;
}

/* This is not a great hash function, but it _is_ correct and fast.
   Examining all entries is too expensive, and examining a random
   subset does not yield a correct hash function. */
static hashcode_t
hash_table_hash (Lisp_Object hash_table, int depth)
{
  return XHASH_TABLE (hash_table)->count;
}


/* Printing hash tables.

   This is non-trivial, because we use a readable structure-style
   syntax for hash tables.  This means that a typical hash table will be
   readably printed in the form of:

   #s(hash-table size 2 data (key1 value1 key2 value2))

   The supported hash table structure keywords and their values are:
   `test'             (eql (or nil), eq or equal)
   `size'             (a natnum or nil)
   `rehash-size'      (a float)
   `rehash-threshold' (a float)
   `weakness'         (nil, key, value, key-and-value, or key-or-value)
   `data'             (a list)

   If `print-readably' is nil, then a simpler syntax is used, for example

   #<hash-table size 2/13 data (key1 value1 key2 value2) 0x874d>

   The data is truncated to four pairs, and the rest is shown with
   `...'.  This printer does not cons.  */


/* Print the data of the hash table.  This maps through a Lisp
   hash table and prints key/value pairs using PRINTCHARFUN.  */
static void
print_hash_table_data (Lisp_Hash_Table *ht, Lisp_Object printcharfun)
{
  int count = 0;
  hentry *e, *sentinel;

  write_c_string (" data (", printcharfun);

  for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
    if (!HENTRY_CLEAR_P (e))
      {
	if (count > 0)
	  write_c_string (" ", printcharfun);
	if (!print_readably && count > 3)
	  {
	    write_c_string ("...", printcharfun);
	    break;
	  }
	print_internal (e->key, printcharfun, 1);
	write_c_string (" ", printcharfun);
	print_internal (e->value, printcharfun, 1);
	count++;
      }

  write_c_string (")", printcharfun);
}

static void
print_hash_table (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
{
  Lisp_Hash_Table *ht = XHASH_TABLE (obj);
  char buf[128];

  write_c_string (print_readably ? "#s(hash-table" : "#<hash-table",
		  printcharfun);

  /* These checks have a kludgy look to them, but they are safe.
     Due to nature of hashing, you cannot use arbitrary
     test functions anyway.  */
  if (!ht->test_function)
    write_c_string (" test eq", printcharfun);
  else if (ht->test_function == lisp_object_equal_equal)
    write_c_string (" test equal", printcharfun);
  else if (ht->test_function == lisp_object_eql_equal)
    DO_NOTHING;
  else
    abort ();

  if (ht->count || !print_readably)
    {
      if (print_readably)
	sprintf (buf, " size %lu", (unsigned long) ht->count);
      else
	sprintf (buf, " size %lu/%lu",
		 (unsigned long) ht->count,
		 (unsigned long) ht->size);
      write_c_string (buf, printcharfun);
    }

  if (ht->weakness != HASH_TABLE_NON_WEAK)
    {
      sprintf (buf, " weakness %s",
	       (ht->weakness == HASH_TABLE_WEAK		  ? "key-and-value" :
		ht->weakness == HASH_TABLE_KEY_WEAK	  ? "key" :
		ht->weakness == HASH_TABLE_VALUE_WEAK	  ? "value" :
		ht->weakness == HASH_TABLE_KEY_VALUE_WEAK ? "key-or-value" :
		"you-d-better-not-see-this"));
      write_c_string (buf, printcharfun);
    }

  if (ht->count)
    print_hash_table_data (ht, printcharfun);

  if (print_readably)
    write_c_string (")", printcharfun);
  else
    {
      sprintf (buf, " 0x%x>", ht->header.uid);
      write_c_string (buf, printcharfun);
    }
}

static void
finalize_hash_table (void *header, int for_disksave)
{
  if (!for_disksave)
    {
      Lisp_Hash_Table *ht = (Lisp_Hash_Table *) header;

      xfree (ht->hentries);
      ht->hentries = 0;
    }
}

static const struct lrecord_description hentry_description_1[] = {
  { XD_LISP_OBJECT, offsetof (hentry, key) },
  { XD_LISP_OBJECT, offsetof (hentry, value) },
  { XD_END }
};

static const struct struct_description hentry_description = {
  sizeof (hentry),
  hentry_description_1
};

const struct lrecord_description hash_table_description[] = {
  { XD_SIZE_T,     offsetof (Lisp_Hash_Table, size) },
  { XD_STRUCT_PTR, offsetof (Lisp_Hash_Table, hentries), XD_INDIRECT(0, 1), &hentry_description },
  { XD_LO_LINK,    offsetof (Lisp_Hash_Table, next_weak) },
  { XD_END }
};

DEFINE_LRECORD_IMPLEMENTATION ("hash-table", hash_table,
                               mark_hash_table, print_hash_table,
			       finalize_hash_table,
			       hash_table_equal, hash_table_hash,
			       hash_table_description,
			       Lisp_Hash_Table);

static Lisp_Hash_Table *
xhash_table (Lisp_Object hash_table)
{
  if (!gc_in_progress)
    CHECK_HASH_TABLE (hash_table);
  check_hash_table_invariants (XHASH_TABLE (hash_table));
  return XHASH_TABLE (hash_table);
}


/************************************************************************/
/*			 Creation of Hash Tables			*/
/************************************************************************/

/* Creation of hash tables, without error-checking. */
static void
compute_hash_table_derived_values (Lisp_Hash_Table *ht)
{
  ht->rehash_count = (size_t)
    ((double) ht->size * ht->rehash_threshold);
  ht->golden_ratio = (size_t)
    ((double) ht->size * (.6180339887 / (double) sizeof (Lisp_Object)));
}

Lisp_Object
make_general_lisp_hash_table (enum hash_table_test test,
			      size_t size,
			      double rehash_size,
			      double rehash_threshold,
			      enum hash_table_weakness weakness)
{
  Lisp_Object hash_table;
  Lisp_Hash_Table *ht = alloc_lcrecord_type (Lisp_Hash_Table, &lrecord_hash_table);

  switch (test)
    {
    case HASH_TABLE_EQ:
      ht->test_function = 0;
      ht->hash_function = 0;
      break;

    case HASH_TABLE_EQL:
      ht->test_function = lisp_object_eql_equal;
      ht->hash_function = lisp_object_eql_hash;
      break;

    case HASH_TABLE_EQUAL:
      ht->test_function = lisp_object_equal_equal;
      ht->hash_function = lisp_object_equal_hash;
      break;

    default:
      abort ();
    }

  ht->weakness = weakness;

  ht->rehash_size =
    rehash_size > 1.0 ? rehash_size : HASH_TABLE_DEFAULT_REHASH_SIZE;

  ht->rehash_threshold =
    rehash_threshold > 0.0 ? rehash_threshold :
    size > 4096 && !ht->test_function ? 0.7 : 0.6;

  if (size < HASH_TABLE_MIN_SIZE)
    size = HASH_TABLE_MIN_SIZE;
  ht->size = hash_table_size ((size_t) (((double) size / ht->rehash_threshold)
					+ 1.0));
  ht->count = 0;

  compute_hash_table_derived_values (ht);

  /* We leave room for one never-occupied sentinel hentry at the end.  */
  ht->hentries = xnew_array (hentry, ht->size + 1);

  {
    hentry *e, *sentinel;
    for (e = ht->hentries, sentinel = e + ht->size; e <= sentinel; e++)
      CLEAR_HENTRY (e);
  }

  XSETHASH_TABLE (hash_table, ht);

  if (weakness == HASH_TABLE_NON_WEAK)
    ht->next_weak = Qunbound;
  else
    ht->next_weak = Vall_weak_hash_tables, Vall_weak_hash_tables = hash_table;

  return hash_table;
}

Lisp_Object
make_lisp_hash_table (size_t size,
		      enum hash_table_weakness weakness,
		      enum hash_table_test test)
{
  return make_general_lisp_hash_table (test, size, -1.0, -1.0, weakness);
}

/* Pretty reading of hash tables.

   Here we use the existing structures mechanism (which is,
   unfortunately, pretty cumbersome) for validating and instantiating
   the hash tables.  The idea is that the side-effect of reading a
   #s(hash-table PLIST) object is creation of a hash table with desired
   properties, and that the hash table is returned.  */

/* Validation functions: each keyword provides its own validation
   function.  The errors should maybe be continuable, but it is
   unclear how this would cope with ERRB.  */
static int
hash_table_size_validate (Lisp_Object keyword, Lisp_Object value,
			 Error_behavior errb)
{
  if (NATNUMP (value))
    return 1;

  maybe_signal_error (Qwrong_type_argument, list2 (Qnatnump, value),
		      Qhash_table, errb);
  return 0;
}

static size_t
decode_hash_table_size (Lisp_Object obj)
{
  return NILP (obj) ? HASH_TABLE_DEFAULT_SIZE : XINT (obj);
}

static int
hash_table_weakness_validate (Lisp_Object keyword, Lisp_Object value,
			      Error_behavior errb)
{
  if (EQ (value, Qnil))			return 1;
  if (EQ (value, Qt))			return 1;
  if (EQ (value, Qkey))			return 1;
  if (EQ (value, Qkey_and_value))	return 1;
  if (EQ (value, Qkey_or_value))	return 1;
  if (EQ (value, Qvalue))		return 1;

  /* Following values are obsolete as of 19990901 in xemacs-21.2 */
  if (EQ (value, Qnon_weak))		return 1;
  if (EQ (value, Qweak))		return 1;
  if (EQ (value, Qkey_weak))		return 1;
  if (EQ (value, Qkey_or_value_weak))	return 1;
  if (EQ (value, Qvalue_weak))		return 1;

  maybe_signal_simple_error ("Invalid hash table weakness",
			     value, Qhash_table, errb);
  return 0;
}

static enum hash_table_weakness
decode_hash_table_weakness (Lisp_Object obj)
{
  if (EQ (obj, Qnil))			return HASH_TABLE_NON_WEAK;
  if (EQ (obj, Qt))			return HASH_TABLE_WEAK;
  if (EQ (obj, Qkey_and_value))		return HASH_TABLE_WEAK;
  if (EQ (obj, Qkey))			return HASH_TABLE_KEY_WEAK;
  if (EQ (obj, Qkey_or_value))		return HASH_TABLE_KEY_VALUE_WEAK;
  if (EQ (obj, Qvalue))			return HASH_TABLE_VALUE_WEAK;

  /* Following values are obsolete as of 19990901 in xemacs-21.2 */
  if (EQ (obj, Qnon_weak))		return HASH_TABLE_NON_WEAK;
  if (EQ (obj, Qweak))			return HASH_TABLE_WEAK;
  if (EQ (obj, Qkey_weak))		return HASH_TABLE_KEY_WEAK;
  if (EQ (obj, Qkey_or_value_weak))	return HASH_TABLE_KEY_VALUE_WEAK;
  if (EQ (obj, Qvalue_weak))		return HASH_TABLE_VALUE_WEAK;

  signal_simple_error ("Invalid hash table weakness", obj);
  return HASH_TABLE_NON_WEAK; /* not reached */
}

static int
hash_table_test_validate (Lisp_Object keyword, Lisp_Object value,
			 Error_behavior errb)
{
  if (EQ (value, Qnil))	  return 1;
  if (EQ (value, Qeq))	  return 1;
  if (EQ (value, Qequal)) return 1;
  if (EQ (value, Qeql))	  return 1;

  maybe_signal_simple_error ("Invalid hash table test",
			     value, Qhash_table, errb);
  return 0;
}

static enum hash_table_test
decode_hash_table_test (Lisp_Object obj)
{
  if (EQ (obj, Qnil))	return HASH_TABLE_EQL;
  if (EQ (obj, Qeq))	return HASH_TABLE_EQ;
  if (EQ (obj, Qequal)) return HASH_TABLE_EQUAL;
  if (EQ (obj, Qeql))	return HASH_TABLE_EQL;

  signal_simple_error ("Invalid hash table test", obj);
  return HASH_TABLE_EQ; /* not reached */
}

static int
hash_table_rehash_size_validate (Lisp_Object keyword, Lisp_Object value,
				 Error_behavior errb)
{
  if (!FLOATP (value))
    {
      maybe_signal_error (Qwrong_type_argument, list2 (Qfloatp, value),
			  Qhash_table, errb);
      return 0;
    }

  {
    double rehash_size = XFLOAT_DATA (value);
    if (rehash_size <= 1.0)
      {
	maybe_signal_simple_error
	  ("Hash table rehash size must be greater than 1.0",
	   value, Qhash_table, errb);
	return 0;
      }
  }

  return 1;
}

static double
decode_hash_table_rehash_size (Lisp_Object rehash_size)
{
  return NILP (rehash_size) ? -1.0 : XFLOAT_DATA (rehash_size);
}

static int
hash_table_rehash_threshold_validate (Lisp_Object keyword, Lisp_Object value,
				     Error_behavior errb)
{
  if (!FLOATP (value))
    {
      maybe_signal_error (Qwrong_type_argument, list2 (Qfloatp, value),
			  Qhash_table, errb);
      return 0;
    }

  {
    double rehash_threshold = XFLOAT_DATA (value);
    if (rehash_threshold <= 0.0 || rehash_threshold >= 1.0)
      {
	maybe_signal_simple_error
	  ("Hash table rehash threshold must be between 0.0 and 1.0",
	   value, Qhash_table, errb);
	return 0;
      }
  }

  return 1;
}

static double
decode_hash_table_rehash_threshold (Lisp_Object rehash_threshold)
{
  return NILP (rehash_threshold) ? -1.0 : XFLOAT_DATA (rehash_threshold);
}

static int
hash_table_data_validate (Lisp_Object keyword, Lisp_Object value,
			 Error_behavior errb)
{
  int len;

  GET_EXTERNAL_LIST_LENGTH (value, len);

  if (len & 1)
    {
      maybe_signal_simple_error
	("Hash table data must have alternating key/value pairs",
	 value, Qhash_table, errb);
      return 0;
    }
  return 1;
}

/* The actual instantiation of a hash table.  This does practically no
   error checking, because it relies on the fact that the paranoid
   functions above have error-checked everything to the last details.
   If this assumption is wrong, we will get a crash immediately (with
   error-checking compiled in), and we'll know if there is a bug in
   the structure mechanism.  So there.  */
static Lisp_Object
hash_table_instantiate (Lisp_Object plist)
{
  Lisp_Object hash_table;
  Lisp_Object test	       = Qnil;
  Lisp_Object size	       = Qnil;
  Lisp_Object rehash_size      = Qnil;
  Lisp_Object rehash_threshold = Qnil;
  Lisp_Object weakness	       = Qnil;
  Lisp_Object data	       = Qnil;

  while (!NILP (plist))
    {
      Lisp_Object key, value;
      key   = XCAR (plist); plist = XCDR (plist);
      value = XCAR (plist); plist = XCDR (plist);

      if      (EQ (key, Qtest))		    test	     = value;
      else if (EQ (key, Qsize))		    size	     = value;
      else if (EQ (key, Qrehash_size))	    rehash_size	     = value;
      else if (EQ (key, Qrehash_threshold)) rehash_threshold = value;
      else if (EQ (key, Qweakness))	    weakness	     = value;
      else if (EQ (key, Qdata))		    data	     = value;
      else if (EQ (key, Qtype))/*obsolete*/ weakness	     = value;
      else
	abort ();
    }

  /* Create the hash table.  */
  hash_table = make_general_lisp_hash_table
    (decode_hash_table_test (test),
     decode_hash_table_size (size),
     decode_hash_table_rehash_size (rehash_size),
     decode_hash_table_rehash_threshold (rehash_threshold),
     decode_hash_table_weakness (weakness));

  /* I'm not sure whether this can GC, but better safe than sorry.  */
  {
    struct gcpro gcpro1;
    GCPRO1 (hash_table);

    /* And fill it with data.  */
    while (!NILP (data))
      {
	Lisp_Object key, value;
	key   = XCAR (data); data = XCDR (data);
	value = XCAR (data); data = XCDR (data);
	Fputhash (key, value, hash_table);
      }
    UNGCPRO;
  }

  return hash_table;
}

static void
structure_type_create_hash_table_structure_name (Lisp_Object structure_name)
{
  struct structure_type *st;

  st = define_structure_type (structure_name, 0, hash_table_instantiate);
  define_structure_type_keyword (st, Qtest, hash_table_test_validate);
  define_structure_type_keyword (st, Qsize, hash_table_size_validate);
  define_structure_type_keyword (st, Qrehash_size, hash_table_rehash_size_validate);
  define_structure_type_keyword (st, Qrehash_threshold, hash_table_rehash_threshold_validate);
  define_structure_type_keyword (st, Qweakness, hash_table_weakness_validate);
  define_structure_type_keyword (st, Qdata, hash_table_data_validate);

  /* obsolete as of 19990901 in xemacs-21.2 */
  define_structure_type_keyword (st, Qtype, hash_table_weakness_validate);
}

/* Create a built-in Lisp structure type named `hash-table'.
   We make #s(hashtable ...) equivalent to #s(hash-table ...),
   for backward compatibility.
   This is called from emacs.c.  */
void
structure_type_create_hash_table (void)
{
  structure_type_create_hash_table_structure_name (Qhash_table);
  structure_type_create_hash_table_structure_name (Qhashtable); /* compat */
}


/************************************************************************/
/*		Definition of Lisp-visible methods			*/
/************************************************************************/

DEFUN ("hash-table-p", Fhash_table_p, 1, 1, 0, /*
Return t if OBJECT is a hash table, else nil.
*/
       (object))
{
  return HASH_TABLEP (object) ? Qt : Qnil;
}

DEFUN ("make-hash-table", Fmake_hash_table, 0, MANY, 0, /*
Return a new empty hash table object.
Use Common Lisp style keywords to specify hash table properties.
 (make-hash-table &key test size rehash-size rehash-threshold weakness)

Keyword :test can be `eq', `eql' (default) or `equal'.
Comparison between keys is done using this function.
If speed is important, consider using `eq'.
When storing strings in the hash table, you will likely need to use `equal'.

Keyword :size specifies the number of keys likely to be inserted.
This number of entries can be inserted without enlarging the hash table.

Keyword :rehash-size must be a float greater than 1.0, and specifies
the factor by which to increase the size of the hash table when enlarging.

Keyword :rehash-threshold must be a float between 0.0 and 1.0,
and specifies the load factor of the hash table which triggers enlarging.

Non-standard keyword :weakness can be `nil' (default), `t', `key-and-value',
`key', `value' or `key-or-value'. `t' is an alias for `key-and-value'.

A key-and-value-weak hash table, also known as a fully-weak or simply
as a weak hash table, is one whose pointers do not count as GC
referents: for any key-value pair in the hash table, if the only
remaining pointer to either the key or the value is in a weak hash
table, then the pair will be removed from the hash table, and the key
and value collected.  A non-weak hash table (or any other pointer)
would prevent the object from being collected.

A key-weak hash table is similar to a fully-weak hash table except that
a key-value pair will be removed only if the key remains unmarked
outside of weak hash tables.  The pair will remain in the hash table if
the key is pointed to by something other than a weak hash table, even
if the value is not.

A value-weak hash table is similar to a fully-weak hash table except
that a key-value pair will be removed only if the value remains
unmarked outside of weak hash tables.  The pair will remain in the
hash table if the value is pointed to by something other than a weak
hash table, even if the key is not.

A key-or-value-weak hash table is similar to a fully-weak hash table except
that a key-value pair will be removed only if the value and the key remain
unmarked outside of weak hash tables.  The pair will remain in the
hash table if the value or key are pointed to by something other than a weak
hash table, even if the other is not.
*/
       (int nargs, Lisp_Object *args))
{
  int i = 0;
  Lisp_Object test	       = Qnil;
  Lisp_Object size	       = Qnil;
  Lisp_Object rehash_size      = Qnil;
  Lisp_Object rehash_threshold = Qnil;
  Lisp_Object weakness	       = Qnil;

  while (i + 1 < nargs)
    {
      Lisp_Object keyword = args[i++];
      Lisp_Object value   = args[i++];

      if      (EQ (keyword, Q_test))		 test		  = value;
      else if (EQ (keyword, Q_size))		 size		  = value;
      else if (EQ (keyword, Q_rehash_size))	 rehash_size	  = value;
      else if (EQ (keyword, Q_rehash_threshold)) rehash_threshold = value;
      else if (EQ (keyword, Q_weakness))	 weakness	  = value;
      else if (EQ (keyword, Q_type))/*obsolete*/ weakness	  = value;
      else signal_simple_error ("Invalid hash table property keyword", keyword);
    }

  if (i < nargs)
    signal_simple_error ("Hash table property requires a value", args[i]);

#define VALIDATE_VAR(var) \
if (!NILP (var)) hash_table_##var##_validate (Q##var, var, ERROR_ME);

  VALIDATE_VAR (test);
  VALIDATE_VAR (size);
  VALIDATE_VAR (rehash_size);
  VALIDATE_VAR (rehash_threshold);
  VALIDATE_VAR (weakness);

  return make_general_lisp_hash_table
    (decode_hash_table_test (test),
     decode_hash_table_size (size),
     decode_hash_table_rehash_size (rehash_size),
     decode_hash_table_rehash_threshold (rehash_threshold),
     decode_hash_table_weakness (weakness));
}

DEFUN ("copy-hash-table", Fcopy_hash_table, 1, 1, 0, /*
Return a new hash table containing the same keys and values as HASH-TABLE.
The keys and values will not themselves be copied.
*/
       (hash_table))
{
  const Lisp_Hash_Table *ht_old = xhash_table (hash_table);
  Lisp_Hash_Table *ht = alloc_lcrecord_type (Lisp_Hash_Table, &lrecord_hash_table);

  copy_lcrecord (ht, ht_old);

  ht->hentries = xnew_array (hentry, ht_old->size + 1);
  memcpy (ht->hentries, ht_old->hentries, (ht_old->size + 1) * sizeof (hentry));

  XSETHASH_TABLE (hash_table, ht);

  if (! EQ (ht->next_weak, Qunbound))
    {
      ht->next_weak = Vall_weak_hash_tables;
      Vall_weak_hash_tables = hash_table;
    }

  return hash_table;
}

static void
resize_hash_table (Lisp_Hash_Table *ht, size_t new_size)
{
  hentry *old_entries, *new_entries, *sentinel, *e;
  size_t old_size;

  old_size = ht->size;
  ht->size = new_size;

  old_entries = ht->hentries;

  ht->hentries = xnew_array_and_zero (hentry, new_size + 1);
  new_entries = ht->hentries;

  compute_hash_table_derived_values (ht);

  for (e = old_entries, sentinel = e + old_size; e < sentinel; e++)
    if (!HENTRY_CLEAR_P (e))
      {
	hentry *probe = new_entries + HASH_CODE (e->key, ht);
	LINEAR_PROBING_LOOP (probe, new_entries, new_size)
	  ;
	*probe = *e;
      }

  if (!DUMPEDP (old_entries))
    xfree (old_entries);
}

/* After a hash table has been saved to disk and later restored by the
   portable dumper, it contains the same objects, but their addresses
   and thus their HASH_CODEs have changed. */
void
pdump_reorganize_hash_table (Lisp_Object hash_table)
{
  const Lisp_Hash_Table *ht = xhash_table (hash_table);
  hentry *new_entries = xnew_array_and_zero (hentry, ht->size + 1);
  hentry *e, *sentinel;

  for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
    if (!HENTRY_CLEAR_P (e))
      {
	hentry *probe = new_entries + HASH_CODE (e->key, ht);
	LINEAR_PROBING_LOOP (probe, new_entries, ht->size)
	  ;
	*probe = *e;
      }

  memcpy (ht->hentries, new_entries, ht->size * sizeof (hentry));

  xfree (new_entries);
}

static void
enlarge_hash_table (Lisp_Hash_Table *ht)
{
  size_t new_size =
    hash_table_size ((size_t) ((double) ht->size * ht->rehash_size));
  resize_hash_table (ht, new_size);
}

static hentry *
find_hentry (Lisp_Object key, const Lisp_Hash_Table *ht)
{
  hash_table_test_function_t test_function = ht->test_function;
  hentry *entries = ht->hentries;
  hentry *probe = entries + HASH_CODE (key, ht);

  LINEAR_PROBING_LOOP (probe, entries, ht->size)
    if (KEYS_EQUAL_P (probe->key, key, test_function))
      break;

  return probe;
}

DEFUN ("gethash", Fgethash, 2, 3, 0, /*
Find hash value for KEY in HASH-TABLE.
If there is no corresponding value, return DEFAULT (which defaults to nil).
*/
       (key, hash_table, default_))
{
  const Lisp_Hash_Table *ht = xhash_table (hash_table);
  hentry *e = find_hentry (key, ht);

  return HENTRY_CLEAR_P (e) ? default_ : e->value;
}

DEFUN ("puthash", Fputhash, 3, 3, 0, /*
Hash KEY to VALUE in HASH-TABLE.
*/
       (key, value, hash_table))
{
  Lisp_Hash_Table *ht = xhash_table (hash_table);
  hentry *e = find_hentry (key, ht);

  if (!HENTRY_CLEAR_P (e))
    return e->value = value;

  e->key   = key;
  e->value = value;

  if (++ht->count >= ht->rehash_count)
    enlarge_hash_table (ht);

  return value;
}

/* Remove hentry pointed at by PROBE.
   Subsequent entries are removed and reinserted.
   We don't use tombstones - too wasteful.  */
static void
remhash_1 (Lisp_Hash_Table *ht, hentry *entries, hentry *probe)
{
  size_t size = ht->size;
  CLEAR_HENTRY (probe);
  probe++;
  ht->count--;

  LINEAR_PROBING_LOOP (probe, entries, size)
    {
      Lisp_Object key = probe->key;
      hentry *probe2 = entries + HASH_CODE (key, ht);
      LINEAR_PROBING_LOOP (probe2, entries, size)
	if (EQ (probe2->key, key))
	  /* hentry at probe doesn't need to move. */
	  goto continue_outer_loop;
      /* Move hentry from probe to new home at probe2. */
      *probe2 = *probe;
      CLEAR_HENTRY (probe);
    continue_outer_loop: continue;
    }
}

DEFUN ("remhash", Fremhash, 2, 2, 0, /*
Remove the entry for KEY from HASH-TABLE.
Do nothing if there is no entry for KEY in HASH-TABLE.
*/
       (key, hash_table))
{
  Lisp_Hash_Table *ht = xhash_table (hash_table);
  hentry *e = find_hentry (key, ht);

  if (HENTRY_CLEAR_P (e))
    return Qnil;

  remhash_1 (ht, ht->hentries, e);
  return Qt;
}

DEFUN ("clrhash", Fclrhash, 1, 1, 0, /*
Remove all entries from HASH-TABLE, leaving it empty.
*/
       (hash_table))
{
  Lisp_Hash_Table *ht = xhash_table (hash_table);
  hentry *e, *sentinel;

  for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
    CLEAR_HENTRY (e);
  ht->count = 0;

  return hash_table;
}

/************************************************************************/
/*			    Accessor Functions				*/
/************************************************************************/

DEFUN ("hash-table-count", Fhash_table_count, 1, 1, 0, /*
Return the number of entries in HASH-TABLE.
*/
       (hash_table))
{
  return make_int (xhash_table (hash_table)->count);
}

DEFUN ("hash-table-test", Fhash_table_test, 1, 1, 0, /*
Return the test function of HASH-TABLE.
This can be one of `eq', `eql' or `equal'.
*/
       (hash_table))
{
  hash_table_test_function_t fun = xhash_table (hash_table)->test_function;

  return (fun == lisp_object_eql_equal   ? Qeql   :
	  fun == lisp_object_equal_equal ? Qequal :
	  Qeq);
}

DEFUN ("hash-table-size", Fhash_table_size, 1, 1, 0, /*
Return the size of HASH-TABLE.
This is the current number of slots in HASH-TABLE, whether occupied or not.
*/
       (hash_table))
{
  return make_int (xhash_table (hash_table)->size);
}

DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size, 1, 1, 0, /*
Return the current rehash size of HASH-TABLE.
This is a float greater than 1.0; the factor by which HASH-TABLE
is enlarged when the rehash threshold is exceeded.
*/
       (hash_table))
{
  return make_float (xhash_table (hash_table)->rehash_size);
}

DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold, 1, 1, 0, /*
Return the current rehash threshold of HASH-TABLE.
This is a float between 0.0 and 1.0; the maximum `load factor' of HASH-TABLE,
beyond which the HASH-TABLE is enlarged by rehashing.
*/
       (hash_table))
{
  return make_float (xhash_table (hash_table)->rehash_threshold);
}

DEFUN ("hash-table-weakness", Fhash_table_weakness, 1, 1, 0, /*
Return the weakness of HASH-TABLE.
This can be one of `nil', `key-and-value', `key-or-value', `key' or `value'.
*/
       (hash_table))
{
  switch (xhash_table (hash_table)->weakness)
    {
    case HASH_TABLE_WEAK:		return Qkey_and_value;
    case HASH_TABLE_KEY_WEAK:		return Qkey;
    case HASH_TABLE_KEY_VALUE_WEAK:	return Qkey_or_value;
    case HASH_TABLE_VALUE_WEAK:		return Qvalue;
    default:				return Qnil;
    }
}

/* obsolete as of 19990901 in xemacs-21.2 */
DEFUN ("hash-table-type", Fhash_table_type, 1, 1, 0, /*
Return the type of HASH-TABLE.
This can be one of `non-weak', `weak', `key-weak' or `value-weak'.
*/
       (hash_table))
{
  switch (xhash_table (hash_table)->weakness)
    {
    case HASH_TABLE_WEAK:		return Qweak;
    case HASH_TABLE_KEY_WEAK:		return Qkey_weak;
    case HASH_TABLE_KEY_VALUE_WEAK:	return Qkey_or_value_weak;
    case HASH_TABLE_VALUE_WEAK:		return Qvalue_weak;
    default:				return Qnon_weak;
    }
}

/************************************************************************/
/*			    Mapping Functions				*/
/************************************************************************/
DEFUN ("maphash", Fmaphash, 2, 2, 0, /*
Map FUNCTION over entries in HASH-TABLE, calling it with two args,
each key and value in HASH-TABLE.

FUNCTION may not modify HASH-TABLE, with the one exception that FUNCTION
may remhash or puthash the entry currently being processed by FUNCTION.
*/
       (function, hash_table))
{
  const Lisp_Hash_Table *ht = xhash_table (hash_table);
  const hentry *e, *sentinel;

  for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
    if (!HENTRY_CLEAR_P (e))
      {
	Lisp_Object args[3], key;
      again:
	key = e->key;
	args[0] = function;
	args[1] = key;
	args[2] = e->value;
	Ffuncall (countof (args), args);
	/* Has FUNCTION done a remhash? */
	if (!EQ (key, e->key) && !HENTRY_CLEAR_P (e))
	  goto again;
      }

  return Qnil;
}

/* Map *C* function FUNCTION over the elements of a lisp hash table. */
void
elisp_maphash (maphash_function_t function,
	       Lisp_Object hash_table, void *extra_arg)
{
  const Lisp_Hash_Table *ht = XHASH_TABLE (hash_table);
  const hentry *e, *sentinel;

  for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
    if (!HENTRY_CLEAR_P (e))
      {
	Lisp_Object key;
      again:
	key = e->key;
	if (function (key, e->value, extra_arg))
	  return;
	/* Has FUNCTION done a remhash? */
	if (!EQ (key, e->key) && !HENTRY_CLEAR_P (e))
	  goto again;
      }
}

/* Remove all elements of a lisp hash table satisfying *C* predicate PREDICATE. */
void
elisp_map_remhash (maphash_function_t predicate,
		   Lisp_Object hash_table, void *extra_arg)
{
  Lisp_Hash_Table *ht = XHASH_TABLE (hash_table);
  hentry *e, *entries, *sentinel;

  for (e = entries = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
    if (!HENTRY_CLEAR_P (e))
      {
      again:
	if (predicate (e->key, e->value, extra_arg))
	  {
	    remhash_1 (ht, entries, e);
	    if (!HENTRY_CLEAR_P (e))
	      goto again;
	  }
      }
}


/************************************************************************/
/*		   garbage collecting weak hash tables			*/
/************************************************************************/
#define MARK_OBJ(obj) do {		\
  Lisp_Object mo_obj = (obj);		\
  if (!marked_p (mo_obj))		\
    {					\
      mark_object (mo_obj);		\
      did_mark = 1;			\
    }					\
} while (0)


/* Complete the marking for semi-weak hash tables. */
int
finish_marking_weak_hash_tables (void)
{
  Lisp_Object hash_table;
  int did_mark = 0;

  for (hash_table = Vall_weak_hash_tables;
       !NILP (hash_table);
       hash_table = XHASH_TABLE (hash_table)->next_weak)
    {
      const Lisp_Hash_Table *ht = XHASH_TABLE (hash_table);
      const hentry *e = ht->hentries;
      const hentry *sentinel = e + ht->size;

      if (! marked_p (hash_table))
	/* The hash table is probably garbage.  Ignore it. */
	continue;

      /* Now, scan over all the pairs.  For all pairs that are
	 half-marked, we may need to mark the other half if we're
	 keeping this pair. */
      switch (ht->weakness)
	{
	case HASH_TABLE_KEY_WEAK:
	  for (; e < sentinel; e++)
	    if (!HENTRY_CLEAR_P (e))
	      if (marked_p (e->key))
		MARK_OBJ (e->value);
	  break;

	case HASH_TABLE_VALUE_WEAK:
	  for (; e < sentinel; e++)
	    if (!HENTRY_CLEAR_P (e))
	      if (marked_p (e->value))
		MARK_OBJ (e->key);
	  break;

	case HASH_TABLE_KEY_VALUE_WEAK:
	  for (; e < sentinel; e++)
	    if (!HENTRY_CLEAR_P (e))
	      {
		if (marked_p (e->value))
		  MARK_OBJ (e->key);
		else if (marked_p (e->key))
		  MARK_OBJ (e->value);
	      }
	  break;

	case HASH_TABLE_KEY_CAR_WEAK:
	  for (; e < sentinel; e++)
	    if (!HENTRY_CLEAR_P (e))
	      if (!CONSP (e->key) || marked_p (XCAR (e->key)))
		{
		  MARK_OBJ (e->key);
		  MARK_OBJ (e->value);
		}
	  break;

	case HASH_TABLE_VALUE_CAR_WEAK:
	  for (; e < sentinel; e++)
	    if (!HENTRY_CLEAR_P (e))
	      if (!CONSP (e->value) || marked_p (XCAR (e->value)))
		{
		  MARK_OBJ (e->key);
		  MARK_OBJ (e->value);
		}
	  break;

	default:
	  break;
	}
    }

  return did_mark;
}

void
prune_weak_hash_tables (void)
{
  Lisp_Object hash_table, prev = Qnil;
  for (hash_table = Vall_weak_hash_tables;
       !NILP (hash_table);
       hash_table = XHASH_TABLE (hash_table)->next_weak)
    {
      if (! marked_p (hash_table))
	{
	  /* This hash table itself is garbage.  Remove it from the list. */
	  if (NILP (prev))
	    Vall_weak_hash_tables = XHASH_TABLE (hash_table)->next_weak;
	  else
	    XHASH_TABLE (prev)->next_weak = XHASH_TABLE (hash_table)->next_weak;
	}
      else
	{
	  /* Now, scan over all the pairs.  Remove all of the pairs
	     in which the key or value, or both, is unmarked
	     (depending on the weakness of the hash table). */
	  Lisp_Hash_Table *ht = XHASH_TABLE (hash_table);
	  hentry *entries = ht->hentries;
	  hentry *sentinel = entries + ht->size;
	  hentry *e;

	  for (e = entries; e < sentinel; e++)
	    if (!HENTRY_CLEAR_P (e))
	      {
	      again:
		if (!marked_p (e->key) || !marked_p (e->value))
		  {
		    remhash_1 (ht, entries, e);
		    if (!HENTRY_CLEAR_P (e))
		      goto again;
		  }
	      }

	  prev = hash_table;
	}
    }
}

/* Return a hash value for an array of Lisp_Objects of size SIZE. */

hashcode_t
internal_array_hash (Lisp_Object *arr, int size, int depth)
{
  int i;
  hashcode_t hash = 0;
  depth++;

  if (size <= 5)
    {
      for (i = 0; i < size; i++)
	hash = HASH2 (hash, internal_hash (arr[i], depth));
      return hash;
    }

  /* just pick five elements scattered throughout the array.
     A slightly better approach would be to offset by some
     noise factor from the points chosen below. */
  for (i = 0; i < 5; i++)
    hash = HASH2 (hash, internal_hash (arr[i*size/5], depth));

  return hash;
}

/* Return a hash value for a Lisp_Object.  This is for use when hashing
   objects with the comparison being `equal' (for `eq', you can just
   use the Lisp_Object itself as the hash value).  You need to make a
   tradeoff between the speed of the hash function and how good the
   hashing is.  In particular, the hash function needs to be FAST,
   so you can't just traipse down the whole tree hashing everything
   together.  Most of the time, objects will differ in the first
   few elements you hash.  Thus, we only go to a short depth (5)
   and only hash at most 5 elements out of a vector.  Theoretically
   we could still take 5^5 time (a big big number) to compute a
   hash, but practically this won't ever happen. */

hashcode_t
internal_hash (Lisp_Object obj, int depth)
{
  if (depth > 5)
    return 0;
  if (CONSP (obj))
    {
      /* no point in worrying about tail recursion, since we're not
	 going very deep */
      return HASH2 (internal_hash (XCAR (obj), depth + 1),
		    internal_hash (XCDR (obj), depth + 1));
    }
  if (STRINGP (obj))
    {
      return hash_string (XSTRING_DATA (obj), XSTRING_LENGTH (obj));
    }
  if (LRECORDP (obj))
    {
      const struct lrecord_implementation
	*imp = XRECORD_LHEADER_IMPLEMENTATION (obj);
      if (imp->hash)
	return imp->hash (obj, depth);
    }

  return LISP_HASH (obj);
}

DEFUN ("sxhash", Fsxhash, 1, 1, 0, /*
Return a hash value for OBJECT.
\(equal obj1 obj2) implies (= (sxhash obj1) (sxhash obj2)).
*/
       (object))
{
  return make_int (internal_hash (object, 0));
}

#if 0
xxDEFUN ("internal-hash-value", Finternal_hash_value, 1, 1, 0, /*
Hash value of OBJECT.  For debugging.
The value is returned as (HIGH . LOW).
*/
       (object))
{
  /* This function is pretty 32bit-centric. */
  hashcode_t hash = internal_hash (object, 0);
  return Fcons (hash >> 16, hash & 0xffff);
}
#endif


/************************************************************************/
/*                            initialization                            */
/************************************************************************/

void
syms_of_elhash (void)
{
  INIT_LRECORD_IMPLEMENTATION (hash_table);

  DEFSUBR (Fhash_table_p);
  DEFSUBR (Fmake_hash_table);
  DEFSUBR (Fcopy_hash_table);
  DEFSUBR (Fgethash);
  DEFSUBR (Fremhash);
  DEFSUBR (Fputhash);
  DEFSUBR (Fclrhash);
  DEFSUBR (Fmaphash);
  DEFSUBR (Fhash_table_count);
  DEFSUBR (Fhash_table_test);
  DEFSUBR (Fhash_table_size);
  DEFSUBR (Fhash_table_rehash_size);
  DEFSUBR (Fhash_table_rehash_threshold);
  DEFSUBR (Fhash_table_weakness);
  DEFSUBR (Fhash_table_type); /* obsolete */
  DEFSUBR (Fsxhash);
#if 0
  DEFSUBR (Finternal_hash_value);
#endif

  defsymbol (&Qhash_tablep, "hash-table-p");
  defsymbol (&Qhash_table, "hash-table");
  defsymbol (&Qhashtable, "hashtable");
  defsymbol (&Qweakness, "weakness");
  defsymbol (&Qvalue, "value");
  defsymbol (&Qkey_or_value, "key-or-value");
  defsymbol (&Qkey_and_value, "key-and-value");
  defsymbol (&Qrehash_size, "rehash-size");
  defsymbol (&Qrehash_threshold, "rehash-threshold");

  defsymbol (&Qweak, "weak");             /* obsolete */
  defsymbol (&Qkey_weak, "key-weak");     /* obsolete */
  defsymbol (&Qkey_or_value_weak, "key-or-value-weak");    /* obsolete */
  defsymbol (&Qvalue_weak, "value-weak"); /* obsolete */
  defsymbol (&Qnon_weak, "non-weak");     /* obsolete */

  defkeyword (&Q_test, ":test");
  defkeyword (&Q_size, ":size");
  defkeyword (&Q_rehash_size, ":rehash-size");
  defkeyword (&Q_rehash_threshold, ":rehash-threshold");
  defkeyword (&Q_weakness, ":weakness");
  defkeyword (&Q_type, ":type"); /* obsolete */
}

void
vars_of_elhash (void)
{
  /* This must NOT be staticpro'd */
  Vall_weak_hash_tables = Qnil;
  pdump_wire_list (&Vall_weak_hash_tables);
}
Tip: Filter by directory path e.g. /media app.js to search for public/media/app.js.
Tip: Use camelCasing e.g. ProjME to search for ProjectModifiedEvent.java.
Tip: Filter by extension type e.g. /repo .js to search for all .js files in the /repo directory.
Tip: Separate your search with spaces e.g. /ssh pom.xml to search for src/ssh/pom.xml.
Tip: Use ↑ and ↓ arrow keys to navigate and return to view the file.
Tip: You can also navigate files with Ctrl+j (next) and Ctrl+k (previous) and view the file with Ctrl+o.
Tip: You can also navigate files with Alt+j (next) and Alt+k (previous) and view the file with Alt+o.