Source

xemacs-beta / src / rangetab.c

Full commit
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
/* XEmacs routines to deal with range tables.
   Copyright (C) 1995 Sun Microsystems, Inc.
   Copyright (C) 1995, 2002, 2004, 2005, 2010 Ben Wing.

This file is part of XEmacs.

XEmacs is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

XEmacs is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with XEmacs; see the file COPYING.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Synched up with: Not in FSF. */

/* Written by Ben Wing, August 1995. */

#include <config.h>
#include "lisp.h"
#include "rangetab.h"

Lisp_Object Qrange_tablep;
Lisp_Object Qrange_table;

Lisp_Object Qstart_closed_end_open;
Lisp_Object Qstart_open_end_open;
Lisp_Object Qstart_closed_end_closed;
Lisp_Object Qstart_open_end_closed;


/************************************************************************/
/*                            Range table object                        */
/************************************************************************/

static enum range_table_type
range_table_symbol_to_type (Lisp_Object symbol)
{
  if (NILP (symbol))
    return RANGE_START_CLOSED_END_OPEN;

  CHECK_SYMBOL (symbol);
  if (EQ (symbol, Qstart_closed_end_open))
    return RANGE_START_CLOSED_END_OPEN;
  if (EQ (symbol, Qstart_closed_end_closed))
    return RANGE_START_CLOSED_END_CLOSED;
  if (EQ (symbol, Qstart_open_end_open))
    return RANGE_START_OPEN_END_OPEN;
  if (EQ (symbol, Qstart_open_end_closed))
    return RANGE_START_OPEN_END_CLOSED;

  invalid_constant ("Unknown range table type", symbol);
  RETURN_NOT_REACHED (RANGE_START_CLOSED_END_OPEN);
}

static Lisp_Object
range_table_type_to_symbol (enum range_table_type type)
{
  switch (type)
    {
    case RANGE_START_CLOSED_END_OPEN:
      return Qstart_closed_end_open;
    case RANGE_START_CLOSED_END_CLOSED:
      return Qstart_closed_end_closed;
    case RANGE_START_OPEN_END_OPEN:
      return Qstart_open_end_open;
    case RANGE_START_OPEN_END_CLOSED:
      return Qstart_open_end_closed;
    }

  ABORT ();
  return Qnil;
}

/* We use a sorted array of ranges.

   #### We should be using the gap array stuff from extents.c.  This
   is not hard but just requires moving that stuff out of that file. */

static Lisp_Object
mark_range_table (Lisp_Object obj)
{
  Lisp_Range_Table *rt = XRANGE_TABLE (obj);
  int i;

  for (i = 0; i < gap_array_length (rt->entries); i++)
    mark_object (rangetab_gap_array_at (rt->entries, i).val);
  
  return Qnil;
}

static void
print_range_table (Lisp_Object obj, Lisp_Object printcharfun,
		   int UNUSED (escapeflag))
{
  Lisp_Range_Table *rt = XRANGE_TABLE (obj);
  int i;

  if (print_readably)
    write_fmt_string_lisp (printcharfun, "#s(range-table :type %s :data (",
			   1, range_table_type_to_symbol (rt->type));
  else
    write_ascstring (printcharfun, "#<range-table ");
  for (i = 0; i < gap_array_length (rt->entries); i++)
    {
      struct range_table_entry rte = rangetab_gap_array_at (rt->entries, i);
      int so, ec;
      if (i > 0)
	write_ascstring (printcharfun, " ");
      switch (rt->type)
	{
	case RANGE_START_CLOSED_END_OPEN: so = 0, ec = 0; break;
	case RANGE_START_CLOSED_END_CLOSED: so = 0, ec = 1; break;
	case RANGE_START_OPEN_END_OPEN: so = 1, ec = 0; break;
	case RANGE_START_OPEN_END_CLOSED: so = 1; ec = 1; break;
	default: ABORT (); so = 0, ec = 0; break;
	}
      write_fmt_string (printcharfun, "%c%ld %ld%c ",
			print_readably ? '(' : so ? '(' : '[',
			(long) (rte.first - so),
			(long) (rte.last - ec),
			print_readably ? ')' : ec ? ']' : ')'
			);
      print_internal (rte.val, printcharfun, 1);
    }
  if (print_readably)
    write_ascstring (printcharfun, "))");
  else
    write_fmt_string (printcharfun, " 0x%x>", LISP_OBJECT_UID (obj));
}

static int
range_table_equal (Lisp_Object obj1, Lisp_Object obj2, int depth, int foldcase)
{
  Lisp_Range_Table *rt1 = XRANGE_TABLE (obj1);
  Lisp_Range_Table *rt2 = XRANGE_TABLE (obj2);
  int i;

  if (gap_array_length (rt1->entries) != gap_array_length (rt2->entries))
    return 0;

  for (i = 0; i < gap_array_length (rt1->entries); i++)
    {
      struct range_table_entry *rte1 =
	rangetab_gap_array_atp (rt1->entries, i);
      struct range_table_entry *rte2 =
	rangetab_gap_array_atp (rt2->entries, i);

      if (rte1->first != rte2->first
	  || rte1->last != rte2->last
	  || !internal_equal_0 (rte1->val, rte2->val, depth + 1, foldcase))
	return 0;
    }

  return 1;
}

static Hashcode
range_table_entry_hash (struct range_table_entry *rte, int depth,
                        Boolint equalp)
{
  return HASH3 (rte->first, rte->last,
                internal_hash (rte->val, depth + 1, equalp));
}

static Hashcode
range_table_hash (Lisp_Object obj, int depth, Boolint equalp)
{
  Lisp_Range_Table *rt = XRANGE_TABLE (obj);
  int i;
  int size = gap_array_length (rt->entries);
  Hashcode hash = size;

  /* approach based on internal_array_hash(). */
  if (size <= 5)
    {
      for (i = 0; i < size; i++)
	hash = HASH2 (hash,
		      range_table_entry_hash
		      (rangetab_gap_array_atp (rt->entries, i), depth, equalp));
      return hash;
    }

  /* just pick five elements scattered throughout the array.
     A slightly better approach would be to offset by some
     noise factor from the points chosen below. */
  for (i = 0; i < 5; i++)
    hash = HASH2 (hash,
		  range_table_entry_hash
		  (rangetab_gap_array_atp (rt->entries, i*size/5),
                   depth, equalp));
  return hash;
}

#ifndef NEW_GC

/* #### This leaks memory under NEW_GC.  To fix this, convert to Lisp object
   gap array. */

static void
finalize_range_table (Lisp_Object obj)
{
  Lisp_Range_Table *rt = XRANGE_TABLE (obj);
  if (rt->entries)
    {
      if (!DUMPEDP (rt->entries))
	free_gap_array (rt->entries);
      rt->entries = 0;
    }
}

#endif /* not NEW_GC */

static const struct memory_description rte_description_1[] = {
  { XD_LISP_OBJECT, offsetof (range_table_entry, val) },
  { XD_END }
};

static const struct sized_memory_description rte_description = {
  sizeof (range_table_entry),
  rte_description_1
};

static const struct memory_description rtega_description_1[] = {
  XD_GAP_ARRAY_DESC (&rte_description),
  { XD_END }
};

static const struct sized_memory_description rtega_description = {
  0, rtega_description_1
};

static const struct memory_description range_table_description[] = {
  { XD_BLOCK_PTR,  offsetof (Lisp_Range_Table, entries),  1,
    { &rtega_description } },
  { XD_END }
};

DEFINE_DUMPABLE_LISP_OBJECT ("range-table", range_table,
			     mark_range_table, print_range_table,
			     IF_OLD_GC (finalize_range_table),
			     range_table_equal, range_table_hash,
			     range_table_description,
			     Lisp_Range_Table);

/************************************************************************/
/*                        Range table operations                        */
/************************************************************************/

#ifdef ERROR_CHECK_STRUCTURES

static void
verify_range_table (Lisp_Range_Table *rt)
{
  int i;

  for (i = 0; i < gap_array_length (rt->entries); i++)
    {
      struct range_table_entry *rte = rangetab_gap_array_atp (rt->entries, i);
      assert (rte->last >= rte->first);
      if (i > 0)
	assert (rangetab_gap_array_at (rt->entries, i - 1).last <= rte->first);
    }
}

#else

#define verify_range_table(rt)

#endif

/* Locate the range table entry corresponding to the value POS, and return
   it.  If found, FOUNDP is set to 1 and the return value specifies an entry
   that encloses POS.  Otherwise, FOUNDP is set to 0 and the return value
   specifies where an entry that encloses POS would be inserted. */

static Elemcount
get_range_table_pos (Elemcount pos, Elemcount nentries,
		     struct range_table_entry *tab,
		     Elemcount gappos, Elemcount gapsize,
		     int *foundp)
{
  Elemcount left = 0, right = nentries;

  /* binary search for the entry.  Based on similar code in
     extent_list_locate(). */
  while (left != right)
    {
      /* RIGHT might not point to a valid entry (i.e. it's at the end
	 of the list), so NEWPOS must round down. */
      Elemcount newpos = (left + right) >> 1;
      struct range_table_entry *entry =
	tab + GAP_ARRAY_ARRAY_TO_MEMORY_POS_1 (newpos, gappos, gapsize);
      if (pos >= entry->last)
	left = newpos + 1;
      else if (pos < entry->first)
	right = newpos;
      else
	{
	  *foundp = 1;
	  return newpos;
	}
    }

  *foundp = 0;
  return left;
}

/* Look up in a range table without the gap array wrapper.
   Used also by the unified range table format. */

static Lisp_Object
get_range_table (Elemcount pos, Elemcount nentries,
		 struct range_table_entry *tab,
		 Elemcount gappos, Elemcount gapsize,
		 Lisp_Object default_)
{
  int foundp;
  Elemcount entrypos = get_range_table_pos (pos, nentries, tab, gappos,
					    gapsize, &foundp);
  if (foundp)
    {
      struct range_table_entry *entry =
	tab + GAP_ARRAY_ARRAY_TO_MEMORY_POS_1 (entrypos, gappos, gapsize);
      return entry->val;
    }

  return default_;
}

DEFUN ("range-table-p", Frange_table_p, 1, 1, 0, /*
Return non-nil if OBJECT is a range table.
*/
       (object))
{
  return RANGE_TABLEP (object) ? Qt : Qnil;
}

DEFUN ("range-table-type", Frange_table_type, 1, 1, 0, /*
Return the type of RANGE-TABLE.

This will be a symbol describing how ranges in RANGE-TABLE function at their
ends; see `make-range-table'.
*/
       (range_table))
{
  CHECK_RANGE_TABLE (range_table);
  return range_table_type_to_symbol (XRANGE_TABLE (range_table)->type);
}

DEFUN ("make-range-table", Fmake_range_table, 0, 1, 0, /*
Return a new, empty range table.
You can manipulate it using `put-range-table', `get-range-table',
`remove-range-table', and `clear-range-table'.
Range tables allow you to efficiently set values for ranges of integers.

 TYPE is a symbol indicating how ranges are assumed to function at their
 ends.  It can be one of
 
 SYMBOL                                     RANGE-START         RANGE-END
 ------                                     -----------         ---------
 `start-closed-end-open'  (the default)     closed              open
 `start-closed-end-closed'                  closed              closed
 `start-open-end-open'                      open                open
 `start-open-end-closed'                    open                closed
 
 A `closed' endpoint of a range means that the number at that end is included
 in the range.  For an `open' endpoint, the number would not be included.
 
 For example, a closed-open range from 5 to 20 would be indicated as [5,
 20) where a bracket indicates a closed end and a parenthesis an open end,
 and would mean `all the numbers between 5 and 20', including 5 but not 20.
 This seems a little strange at first but is in fact extremely common in
 the outside world as well as in computers and makes things work sensibly.
 For example, if I say "there are seven days between today and next week
 today", I'm including today but not next week today; if I included both,
 there would be eight days.  Similarly, there are 15 (= 20 - 5) elements in
 the range [5, 20), but 16 in the range [5, 20].
*/
       (type))
{
  Lisp_Object obj = ALLOC_NORMAL_LISP_OBJECT (range_table);
  Lisp_Range_Table *rt = XRANGE_TABLE (obj);
  rt->entries = make_gap_array (sizeof (struct range_table_entry), 0);
  rt->type = range_table_symbol_to_type (type);
  return obj;
}

DEFUN ("copy-range-table", Fcopy_range_table, 1, 1, 0, /*
Return a new range table which is a copy of RANGE-TABLE.
It will contain the same values for the same ranges as RANGE-TABLE.
The values will not themselves be copied.
*/
       (range_table))
{
  Lisp_Range_Table *rt, *rtnew;
  Lisp_Object obj;
  Elemcount i;

  CHECK_RANGE_TABLE (range_table);
  rt = XRANGE_TABLE (range_table);

  obj = ALLOC_NORMAL_LISP_OBJECT (range_table);
  rtnew = XRANGE_TABLE (obj);
  rtnew->entries = make_gap_array (sizeof (struct range_table_entry), 0);
  rtnew->type = rt->type;

  for (i = 0; i < gap_array_length (rt->entries); i++)
    rtnew->entries =
      gap_array_insert_els (rtnew->entries, i,
			    rangetab_gap_array_atp (rt->entries, i), 1);
  return obj;
}

DEFUN ("get-range-table", Fget_range_table, 2, 3, 0, /*
Find value for position POS in RANGE-TABLE.
If there is no corresponding value, return DEFAULT (defaults to nil).
*/
       (pos, range_table, default_))
{
  Lisp_Range_Table *rt;

  CHECK_RANGE_TABLE (range_table);
  rt = XRANGE_TABLE (range_table);

  CHECK_INT_COERCE_CHAR (pos);

  return get_range_table (XINT (pos), gap_array_length (rt->entries),
			  gap_array_begin (rt->entries,
					   struct range_table_entry),
			  gap_array_gappos (rt->entries),
			  gap_array_gapsize (rt->entries),
			  default_);
}

static void
external_to_internal_adjust_ends (enum range_table_type type,
				  EMACS_INT *first, EMACS_INT *last)
{
  /* Fix up the numbers in accordance with the open/closedness to make
     them behave like default open/closed. */
  switch (type)
    {
    case RANGE_START_CLOSED_END_OPEN: break;
    case RANGE_START_CLOSED_END_CLOSED: (*last)++; break;
    case RANGE_START_OPEN_END_OPEN: (*first)++; break;
    case RANGE_START_OPEN_END_CLOSED: (*first)++, (*last)++; break;
    }
}

static void
internal_to_external_adjust_ends (enum range_table_type type,
				  EMACS_INT *first, EMACS_INT *last)
{
  /* Reverse the changes made in external_to_internal_adjust_ends().
   */
  switch (type)
    {
    case RANGE_START_CLOSED_END_OPEN: break;
    case RANGE_START_CLOSED_END_CLOSED: (*last)--; break;
    case RANGE_START_OPEN_END_OPEN: (*first)--; break;
    case RANGE_START_OPEN_END_CLOSED: (*first)--, (*last)--; break;
    }
}

void
put_range_table (Lisp_Object table, EMACS_INT first,
		 EMACS_INT last, Lisp_Object val)
{
  int i;
  int insert_me_here = -1;
  Lisp_Range_Table *rt = XRANGE_TABLE (table);
  int foundp;

  external_to_internal_adjust_ends (rt->type, &first, &last);
  if (first == last)
    return;
  if (first > last)
    /* This will happen if originally first == last and both ends are
       open. #### Should we signal an error? */
    return;

  if (DUMPEDP (rt->entries))
    rt->entries = gap_array_clone (rt->entries);
  
  i = get_range_table_pos (first, gap_array_length (rt->entries),
			   gap_array_begin (rt->entries,
					    struct range_table_entry),
			   gap_array_gappos (rt->entries),
			   gap_array_gapsize (rt->entries), &foundp);

#ifdef ERROR_CHECK_TYPES
  if (foundp)
    {
      if (i < gap_array_length (rt->entries))
	{
	  struct range_table_entry *entry =
	    rangetab_gap_array_atp (rt->entries, i);
	  assert (first >= entry->first && first < entry->last);
	}
    }
  else
    {
      if (i < gap_array_length (rt->entries))
	{
	  struct range_table_entry *entry =
	    rangetab_gap_array_atp (rt->entries, i);
	  assert (first < entry->first);
	}
      if (i > 0)
	{
	  struct range_table_entry *entry =
	    rangetab_gap_array_atp (rt->entries, i - 1);
	  assert (first >= entry->last);
	}
    }
#endif /* ERROR_CHECK_TYPES */

  /* If the beginning of the new range isn't within any existing range,
     it might still be just grazing the end of an end-open range (remember,
     internally all ranges are start-close end-open); so back up one
     so we consider this range. */
  if (!foundp && i > 0)
    i--;
  
  /* Now insert in the proper place.  This gets tricky because
     we may be overlapping one or more existing ranges and need
     to fix them up. */

  /* First delete all sections of any existing ranges that overlap
     the new range. */
  for (; i < gap_array_length (rt->entries); i++)
    {
      struct range_table_entry *entry =
	rangetab_gap_array_atp (rt->entries, i);
      /* We insert before the first range that begins at or after the
	 new range. */
      if (entry->first >= first && insert_me_here < 0)
	insert_me_here = i;
      if (entry->last < first)
	/* completely before the new range. */
	continue;
      if (entry->first > last)
	/* completely after the new range.  No more possibilities of
	   finding overlapping ranges. */
	break;
      /* At this point the existing ENTRY overlaps or touches the new one. */
      if (entry->first < first && entry->last <= last)
	{
	  /* looks like:

	                 [ NEW )
                [ EXISTING )

	     or

	                 [ NEW )
              [ EXISTING )

	   */
	  /* truncate the end off of it. */
	  entry->last = first;
	}
      else if (entry->first < first && entry->last > last)
	/* looks like:

	         [ NEW )
	       [ EXISTING )

	 */
	/* need to split this one in two. */
	{
	  struct range_table_entry insert_me_too;

	  insert_me_too.first = last;
	  insert_me_too.last = entry->last;
	  insert_me_too.val = entry->val;
	  entry->last = first;
	  rt->entries =
	    gap_array_insert_els (rt->entries, i + 1, &insert_me_too, 1);
	}
      else if (entry->last >= last)
	{
	  /* looks like:

	       [ NEW )
                   [ EXISTING )

             or

	       [ NEW )
	             [ EXISTING )

	   */
	  /* truncate the start off of it. */
	  entry->first = last;
	}
      else
	{
	  /* existing is entirely within new. */
	  gap_array_delete_els (rt->entries, i, 1);
	  i--; /* back up since everything shifted one to the left. */
	}
    }

  /* Someone asked us to delete the range, not insert it. */
  if (UNBOUNDP (val))
    return;

  /* Now insert the new entry, maybe at the end. */

  if (insert_me_here < 0)
    insert_me_here = i;

  {
    struct range_table_entry insert_me;

    insert_me.first = first;
    insert_me.last = last;
    insert_me.val = val;

    rt->entries =
      gap_array_insert_els (rt->entries, insert_me_here, &insert_me, 1);
  }

  /* Now see if we can combine this entry with adjacent ones just
     before or after. */

  if (insert_me_here > 0)
    {
      struct range_table_entry *entry =
	rangetab_gap_array_atp (rt->entries, insert_me_here - 1);
      if (EQ (val, entry->val) && entry->last == first)
	{
	  entry->last = last;
	  gap_array_delete_els (rt->entries, insert_me_here, 1);
	  insert_me_here--;
	  /* We have morphed into a larger range.  Update our records
	     in case we also combine with the one after. */
	  first = entry->first;
	}
    }

  if (insert_me_here < gap_array_length (rt->entries) - 1)
    {
      struct range_table_entry *entry =
	rangetab_gap_array_atp (rt->entries, insert_me_here + 1);
      if (EQ (val, entry->val) && entry->first == last)
	{
	  entry->first = first;
	  gap_array_delete_els (rt->entries, insert_me_here, 1);
	}
    }
}

DEFUN ("put-range-table", Fput_range_table, 4, 4, 0, /*
Set the value for range START .. END to be VALUE in RANGE-TABLE.
*/
       (start, end, value, range_table))
{
  EMACS_INT first, last;

  CHECK_RANGE_TABLE (range_table);
  CHECK_INT_COERCE_CHAR (start);
  first = XINT (start);
  CHECK_INT_COERCE_CHAR (end);
  last = XINT (end);
  if (first > last)
    invalid_argument_2 ("start must be <= end", start, end);

  put_range_table (range_table, first, last, value);
  verify_range_table (XRANGE_TABLE (range_table));
  return Qnil;
}

DEFUN ("remove-range-table", Fremove_range_table, 3, 3, 0, /*
Remove the value for range START .. END in RANGE-TABLE.
*/
       (start, end, range_table))
{
  return Fput_range_table (start, end, Qunbound, range_table);
}

DEFUN ("clear-range-table", Fclear_range_table, 1, 1, 0, /*
Flush RANGE-TABLE.
*/
       (range_table))
{
  CHECK_RANGE_TABLE (range_table);
  gap_array_delete_all_els (XRANGE_TABLE (range_table)->entries);
  return Qnil;
}

DEFUN ("map-range-table", Fmap_range_table, 2, 2, 0, /*
Map FUNCTION over entries in RANGE-TABLE, calling it with three args,
the beginning and end of the range and the corresponding value.

Results are guaranteed to be correct (i.e. each entry processed
exactly once) if FUNCTION modifies or deletes the current entry
\(i.e. passes the current range to `put-range-table' or
`remove-range-table').  If FUNCTION modifies or deletes any other entry,
this guarantee doesn't hold.
*/
       (function, range_table))
{
  Lisp_Range_Table *rt;
  int i;

  CHECK_RANGE_TABLE (range_table);
  CHECK_FUNCTION (function);

  rt = XRANGE_TABLE (range_table);

  /* Do not "optimize" by pulling out the length computation below!
     FUNCTION may have changed the table. */
  for (i = 0; i < gap_array_length (rt->entries); i++)
    {
      struct range_table_entry entry =
	rangetab_gap_array_at (rt->entries, i);
      EMACS_INT first, last;
      Lisp_Object args[4];
      int oldlen;

    again:
      first = entry.first;
      last = entry.last;
      oldlen = gap_array_length (rt->entries);
      args[0] = function;
      /* Fix up the numbers in accordance with the open/closedness of the
	 table. */
      {
	EMACS_INT premier = first, dernier = last;
	internal_to_external_adjust_ends (rt->type, &premier, &dernier);
	args[1] = make_int (premier);
	args[2] = make_int (dernier);
      }
      args[3] = entry.val;
      Ffuncall (countof (args), args);
      /* Has FUNCTION removed the entry? */
      if (oldlen > gap_array_length (rt->entries)
	  && i < gap_array_length (rt->entries)
	  && (first != entry.first || last != entry.last))
	goto again;
      }

  return Qnil;
}


/************************************************************************/
/*                         Range table read syntax                      */
/************************************************************************/

static int
rangetab_type_validate (Lisp_Object UNUSED (keyword), Lisp_Object value,
			Error_Behavior UNUSED (errb))
{
  /* #### should deal with ERRB */
  range_table_symbol_to_type (value);
  return 1;
}

static int
rangetab_data_validate (Lisp_Object UNUSED (keyword), Lisp_Object value,
			Error_Behavior UNUSED (errb))
{
  /* #### should deal with ERRB */
  EXTERNAL_PROPERTY_LIST_LOOP_3 (range, data, value)
    {
      if (!INTP (range) && !CHARP (range)
	  && !(CONSP (range) && CONSP (XCDR (range))
	       && NILP (XCDR (XCDR (range)))
	       && (INTP (XCAR (range)) || CHARP (XCAR (range)))
	       && (INTP (XCAR (XCDR (range))) || CHARP (XCAR (XCDR (range))))))
	sferror ("Invalid range format", range);
    }

  return 1;
}

static Lisp_Object
rangetab_instantiate (Lisp_Object plist)
{
  Lisp_Object data = Qnil, type = Qnil, rangetab;

  if (KEYWORDP (Fcar (plist)))
    {
      PROPERTY_LIST_LOOP_3 (key, value, plist)
	{
	  if (EQ (key, Q_type)) type = value;
	  else if (EQ (key, Q_data)) data = value;
	  else if (!KEYWORDP (key))
            signal_error
	      (Qinvalid_read_syntax, 
	       "can't mix keyword and non-keyword structure syntax",
	       key);
	  else 
	    ABORT ();
	}
    }
#ifdef NEED_TO_HANDLE_21_4_CODE
  else
    {
      PROPERTY_LIST_LOOP_3 (key, value, plist)
	{
	  if (EQ (key, Qtype)) type = value;
	  else if (EQ (key, Qdata)) data = value;
	  else if (KEYWORDP (key))
            signal_error
	      (Qinvalid_read_syntax, 
	       "can't mix keyword and non-keyword structure syntax",
	       key);
	  else 
	    ABORT ();
	}
    }
#endif /* NEED_TO_HANDLE_21_4_CODE */

  rangetab = Fmake_range_table (type);

  {
    PROPERTY_LIST_LOOP_3 (range, val, data)
      {
	if (CONSP (range))
	  Fput_range_table (Fcar (range), Fcar (Fcdr (range)), val,
			    rangetab);
	else
	  Fput_range_table (range, range, val, rangetab);
      }
  }

  return rangetab;
}


/************************************************************************/
/*                         Unified range tables                         */
/************************************************************************/

/* A "unified range table" is a format for storing range tables
   as contiguous blocks of memory.  This is used by the regexp
   code, which needs to use range tables to properly handle []
   constructs in the presence of extended characters but wants to
   store an entire compiled pattern as a contiguous block of memory.

   Unified range tables are designed so that they can be placed
   at an arbitrary (possibly mis-aligned) place in memory.
   (Dealing with alignment is a pain in the ass.)

   WARNING: No provisions for garbage collection are currently made.
   This means that there must not be any Lisp objects in a unified
   range table that need to be marked for garbage collection.
   Good candidates for objects that can go into a range table are

   -- numbers and characters (do not need to be marked)
   -- nil, t (marked elsewhere)
   -- charsets and coding systems (automatically marked because
				   they are in a marked list,
				   and can't be removed)

   Good but slightly less so:

   -- symbols (could be uninterned, but that is not likely)

   Somewhat less good:

   -- buffers, frames, devices (could get deleted)


   It is expected that you work with range tables in the normal
   format and then convert to unified format when you are done
   making modifications.  As such, no functions are provided
   for modifying a unified range table.  The only operations
   you can do to unified range tables are

   -- look up a value
   -- retrieve all the ranges in an iterative fashion

*/

/* The format of a unified range table is as follows:

   -- The first byte contains the number of bytes to skip to find the
      actual start of the table.  This deals with alignment constraints,
      since the table might want to go at any arbitrary place in memory.
   -- The next three bytes contain the number of bytes to skip (from the
      *first* byte) to find the stuff after the table.  It's stored in
      little-endian format because that's how God intended things.  We don't
      necessarily start the stuff at the very end of the table because
      we want to have at least ALIGNOF (EMACS_INT) extra space in case
      we have to move the range table around. (It appears that some
      architectures don't maintain alignment when reallocing.)
   -- At the prescribed offset is a struct unified_range_table, containing
      some number of `struct range_table_entry' entries. */

struct unified_range_table
{
  int nentries;
  enum range_table_type type;
  struct range_table_entry first;
};

/* Return size in bytes needed to store the data in a range table. */

int
unified_range_table_bytes_needed (Lisp_Object rangetab)
{
  return (sizeof (struct range_table_entry) *
	  (gap_array_length (XRANGE_TABLE (rangetab)->entries) - 1) +
	  sizeof (struct unified_range_table) +
	  /* ALIGNOF a struct may be too big. */
	  /* We have four bytes for the size numbers, and an extra
	     four or eight bytes for making sure we get the alignment
	     OK. */
	  ALIGNOF (EMACS_INT) + 4);
}

/* Convert a range table into unified format and store in DEST,
   which must be able to hold the number of bytes returned by
   range_table_bytes_needed(). */

void
unified_range_table_copy_data (Lisp_Object rangetab, void *dest)
{
  /* We cast to the above structure rather than just casting to
     char * and adding sizeof(int), because that will lead to
     mis-aligned data on the Alpha machines. */
  struct unified_range_table *un;
  Gap_Array *rtega = XRANGE_TABLE (rangetab)->entries;
  int total_needed = unified_range_table_bytes_needed (rangetab);
  void *new_dest = ALIGN_PTR ((char *) dest + 4, EMACS_INT);
  Elemcount i;

  * (char *) dest = (char) ((char *) new_dest - (char *) dest);
  * ((unsigned char *) dest + 1) = total_needed & 0xFF;
  total_needed >>= 8;
  * ((unsigned char *) dest + 2) = total_needed & 0xFF;
  total_needed >>= 8;
  * ((unsigned char *) dest + 3) = total_needed & 0xFF;
  un = (struct unified_range_table *) new_dest;
  un->nentries = gap_array_length (rtega);
  un->type = XRANGE_TABLE (rangetab)->type;
  for (i = 0; i < gap_array_length (rtega); i++)
    (&un->first)[i] = rangetab_gap_array_at (rtega, i);
}

/* Return number of bytes actually used by a unified range table. */

int
unified_range_table_bytes_used (void *unrangetab)
{
  return ((* ((unsigned char *) unrangetab + 1))
	  + ((* ((unsigned char *) unrangetab + 2)) << 8)
	  + ((* ((unsigned char *) unrangetab + 3)) << 16));
}

/* Make sure the table is aligned, and move it around if it's not. */
static void
align_the_damn_table (void *unrangetab)
{
  void *cur_dest = (char *) unrangetab + * (char *) unrangetab;
  if (cur_dest != ALIGN_PTR (cur_dest, EMACS_INT))
    {
      int count = (unified_range_table_bytes_used (unrangetab) - 4
		   - ALIGNOF (EMACS_INT));
      /* Find the proper location, just like above. */
      void *new_dest = ALIGN_PTR ((char *) unrangetab + 4, EMACS_INT);
      /* memmove() works in the presence of overlapping data. */
      memmove (new_dest, cur_dest, count);
      * (char *) unrangetab = (char) ((char *) new_dest - (char *) unrangetab);
    }
}

/* Look up a value in a unified range table. */

Lisp_Object
unified_range_table_lookup (void *unrangetab, EMACS_INT pos,
			    Lisp_Object default_)
{
  void *new_dest;
  struct unified_range_table *un;

  align_the_damn_table (unrangetab);
  new_dest = (char *) unrangetab + * (char *) unrangetab;
  un = (struct unified_range_table *) new_dest;

  return get_range_table (pos, un->nentries, &un->first, 0, 0, default_);
}

/* Return number of entries in a unified range table. */

int
unified_range_table_nentries (void *unrangetab)
{
  void *new_dest;
  struct unified_range_table *un;

  align_the_damn_table (unrangetab);
  new_dest = (char *) unrangetab + * (char *) unrangetab;
  un = (struct unified_range_table *) new_dest;
  return un->nentries;
}

/* Return the OFFSETth range (counting from 0) in UNRANGETAB. */
void
unified_range_table_get_range (void *unrangetab, int offset,
			       EMACS_INT *min, EMACS_INT *max,
			       Lisp_Object *val)
{
  void *new_dest;
  struct unified_range_table *un;
  struct range_table_entry *tab;

  align_the_damn_table (unrangetab);
  new_dest = (char *) unrangetab + * (char *) unrangetab;
  un = (struct unified_range_table *) new_dest;

  assert (offset >= 0 && offset < un->nentries);
  tab = (&un->first) + offset;
  *min = tab->first;
  *max = tab->last;
  *val = tab->val;

  internal_to_external_adjust_ends (un->type, min, max);
}


/************************************************************************/
/*                            Initialization                            */
/************************************************************************/

void
syms_of_rangetab (void)
{
  INIT_LISP_OBJECT (range_table);

  DEFSYMBOL_MULTIWORD_PREDICATE (Qrange_tablep);
  DEFSYMBOL (Qrange_table);

  DEFSYMBOL (Qstart_closed_end_open);
  DEFSYMBOL (Qstart_open_end_open);
  DEFSYMBOL (Qstart_closed_end_closed);
  DEFSYMBOL (Qstart_open_end_closed);

  DEFSUBR (Frange_table_p);
  DEFSUBR (Frange_table_type);
  DEFSUBR (Fmake_range_table);
  DEFSUBR (Fcopy_range_table);
  DEFSUBR (Fget_range_table);
  DEFSUBR (Fput_range_table);
  DEFSUBR (Fremove_range_table);
  DEFSUBR (Fclear_range_table);
  DEFSUBR (Fmap_range_table);
}

void
structure_type_create_rangetab (void)
{
  struct structure_type *st;

  st = define_structure_type (Qrange_table, 0, rangetab_instantiate);

  define_structure_type_keyword (st, Q_data, rangetab_data_validate);
  define_structure_type_keyword (st, Q_type, rangetab_type_validate);
#ifdef NEED_TO_HANDLE_21_4_CODE
  define_structure_type_keyword (st, Qdata, rangetab_data_validate);
  define_structure_type_keyword (st, Qtype, rangetab_type_validate);
#endif /* NEED_TO_HANDLE_21_4_CODE */
}