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Motivation



An Illustrative Example

• Simulate a data matrix with n = 600 and p = 3000
•

(
X1
X2

)
∼ 1

3N
(( −2

0
)

, I2
)

+ 1
3N (( 0

3 ) , I2) + 1
3N (( 2

0 ) , I2)
• X3, . . . , X3000 ∼ N(0, 1), independent of (X1, X2)
• Clearly there are three clusters
• Imagine three cell types with two marker genes
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PCA vs Sparse PCA

• Dimension reduced to 2
• Visualize PC1 vs PC2
• Left: conventional PCA
• Right: sparse PCA
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Overview of Sparse PCA

• Sparse PCA = PCA + Sparsity
• Factor loadings are sparse

• Why sparse?
• PCA may be inconsistent in high dimensions (Johnstone and

Lu, 2009; Jung and Marron, 2009)
• Sparsity ⇒ Denoising

• Each principal component only depends on a small number of
variables

• Sparsity ⇒ Better interpretation
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Example in Johnstone and Lu (2009)

• Model studied in Johnstone and Lu (2009)

X⃗ = v ρ⃗ + σε⃗, v ∼ N(0, 1), ε ∼ N(0, Ip), v ⊥ ε

• Cov(X ) = ρρT + σ2Ip, so ρ/∥ρ∥ is the leading eigenvector
• Assume that the true ρ vector is sparse:

• Collect sample X1, . . . , Xn and fix p/n = 2 and σ = (n/p)0.25

• For an estimator ρ̂, compute R(ρ̂, ρ) = cos∠(ρ̂, ρ)
• |R| = 1, perfect estimate; |R| = 0, no information at all
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PCA in High Dimensions (p = 1000)

Sparse PCA
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n = 500, p = 1000, R(PCA) = 0.176, R(SPCA) = 0.893
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PCA in High Dimensions (p = 2000)

Sparse PCA
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n = 1000, p = 2000, R(PCA) = −0.015, R(SPCA) = 0.931
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PCA in High Dimensions (p = 5000)

Sparse PCA

PCA

True PC
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n = 2500, p = 5000, R(PCA) = 0.116, R(SPCA) = 0.974
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Sparse PCA Formulations

• Many different formulations
• Nonconvex objective functions

• The lasso approach in PCA (Jolliffe, Trendafilov, and Uddin,
2003)

• Regression-based (Zou, Hastie, and Tibshirani, 2006)
• Penalized matrix decomposition (Witten, Tibshirani, and

Hastie, 2009)
• Generalized power method (Journée et al., 2010)
• Iterative thresholding method (Shen and Huang, 2008; Ma,

2013)
• ...

• Convex objective functions
• DSPCA (d’Aspremont et al., 2005)
• Fantope projection and selection (Vu et al., 2013)
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Computation of Sparse PCA

• Nonconvex methods
• Fast
• Little global convergence guarantee
• Heavily relies on model assumptions and initial values

• Convex methods
• Global convergence
• Weak assumptions
• Slow
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Gradient-based Sparse PCA
Algorithm



Model Setting

• Convex formulation proposed by Vu et al. (2013)

min
X

− tr(SX ) + λ∥X∥1

s.t. O ⪯ X ⪯ I and tr(X ) = d

• Γp×d : factor loading matrix (eigenvectors, our target)
• Xp×p: estimator of the projection matrix Π = ΓΓT (almost Γ)
• Sp×p: sample covariance matrix (data)
• λ: sparsity parameter
• d : number of components
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Intuition

• Traditional PCA

max
Γ

tr(ΓTSΓ) (maximum explained variance)

s.t. ΓTΓ = Id (orthogonality)

• Adding nonconvex sparsity term

max
Γ

tr(ΓTSΓ) − λd∥Γ∥2
2,0 (number of nonzero rows)

s.t. ΓTΓ = Id

• Convex formulation, X = ΓΓT

max
X

tr(SX ) − λ∥X∥1 (approximation to ∥Γ∥2
2,0)

s.t. O ⪯ X ⪯ I and tr(X ) = d (convex version of ΓTΓ=Id)

• tr(ΓTSΓ) = tr(SΓΓT) = tr(SX ): explained variance

13



Existing Computation Method

• ADMM algorithm

Xk+1 = PFd (Yk − Uk + αS)
Yk+1 = Sαλ(Xk+1 + Uk)
Uk+1 = Uk + Xk+1 − Yk+1

• Sαλ: soft-thresholding operator, easy
• PFd : projection operator onto

Fd = {X : O ⪯ X ⪯ I and tr(X ) = d}, hard
• Requires a full eigen decomposition in each iteration
• O(p3) complexity
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Timing Comparison

Unit: milliseconds
expr min mean median max

Full [1000] 150.631973 155.367721 151.872986 171.347982
Largest [1000] 1.314212 1.686147 1.766314 1.895186
Smallest [1000] 4.746720 5.035787 4.977878 5.373219
Full [2000] 1146.316032 1239.926216 1169.956945 1605.542461
Largest [2000] 7.502122 8.635942 7.897849 12.450570
Smallest [2000] 13.257879 13.783933 13.676452 14.535811
Full [5000] 17278.650632 17677.653736 17705.457132 18283.440595
Largest [5000] 51.513812 57.926554 53.511937 80.093321
Smallest [5000] 51.155627 54.081903 52.349482 64.919859
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Optimization on Intersection of Convex Sets

• Let f (X ) = −tr(SX ) + λ∥X∥1, then the solution is

X∗ = arg min
X∈Fd

f (X )

• A constrained problem on the intersection of convex sets
Fd = C1 ∩ G1 ∩ G2, where

• C1 = {X : tr(X ) = d}
• G1 = {X : g1(X ) ≤ 0}, g1(X ) = θmax(X ) − 1
• G2 = {X : g2(X ) ≤ 0}, g2(X ) = −θmin(X )
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A Nearly Projection-free Algorithm

• Let L(X ) = f (X ) + µ (dC1(X ) + r1[g1(X )]+ + r2[g2(X )]+)
• dC1(X ): distance between X and C1

• [x ]+ = max{x , 0}
• An unconstrained problem minX∈X L(X )
• Projection onto X = {X : ∥X∥F ≤

√
d} is trivial

Theorem
If µ ≥ (

√
2 + 1)(∥S∥F + λp + 1)

√
p/(d + 1), r1 =

√
d(d + 1),

r2 =
√

p(d + 1), then minX∈Fd f (X ) = minX∈X L(X ).
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General Form

• Many statistical models need to solve a complicated
constrained optimization problem

min
x∈K⊂X

f (x), K = C1 ∩ · · · ∩ Cl ∩ G1 ∩ · · · ∩ Gm

• Projection onto Ci is easy
• Gi = {x : gi(x) ≤ 0}, and gi(x) is easy to compute
• For some constants µ and ρi , and some function h(·), we can

construct a new function

L(x ; µ)

=f (x) + µh
(
dC1(x), . . . , dCl (x), ρ−1

1 [g1(x)]+, . . . , ρ−1
m [gm(x)]+

)
• Under some mild conditions,

min
x∈K

f (x) = min
x∈X

L(x ; µ)
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Convergence Analysis

• Many different algorithms to solve minX∈X L(X )
• Subgradient descent
• Proximal-proximal gradient method (Ryu and Yin, 2019)

• For the proximal-proximal gradient method, after T iterations,

L(X̂ ) ≤ min
X∈X

L(X ) + C
T and dFd (X̂ ) ≤ C

T ,

where C is some constant.
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Statistical Property

• Assumptions
• Sparsity: the factor loading matrix has at most s nonzero rows
• Identifiability: the d-th eigengap δd = θd(Σ) − θd+1(Σ) > 0
• Sub-exponential elements:

maxi,j P(|Sij − Σij | ≥ u) ≤ 2 exp(−4nu2/σ2) for all u ≤ σ

Theorem
Take λ = σ

√
log(p)/n, and then with probability at least 1 − 2/p2,

∥X̂ − Π∥F ≤ 4σs
√

log(p)
δd

√
n +

√
2C/δd√

T
+ C

T .

• Interpretation: statistical error + optimization error +
feasibility error

20



Numerical Experiment



Computational Efficiency

• Model setting
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Computational Efficiency

• Comparing with the existing ADMM algorithm
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Applications to Gene Co-expression
Analysis



Application I - Gene Co-expression Network

• Brain gene expression data collected by the CommonMind
Consortium (Fromer et al., 2016)

• To detect groups of genes such that genes in the same group
have high mutual correlations

• p = 16, 423 genes from 258 schizophrenia subjects and 279
control subjects

• Compute d = 5 sparse principal components
• Cluster selected genes into k = 5 groups based on the factor

loadings
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Gene Co-expression Network

• Clustering result for the schizophrenia group
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Gene Co-expression Network

• Differential analysis, control vs schizophrenia
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Application II - Identify Cell-type-specific Marker Genes

• Cell-type-specific genes, also known as marker genes
• Highly expressed in one cell type, but lowly expressed in other

types
• Help to annotate cell clusters and study cellular composition

of bulk tissues
• Key to the analysis of RNA transcriptional data
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Application II - Identify Cell-type-specific Marker Genes

• Typically identified using single-cell RNA sequencing data
• Challenges

• Data availability and cost
• Data quality and noise

(Figure from Polioudakis et al., 2019, Neuron.)
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The Proposed Approach

• Develop semi-supervised statistical technique to identify
marker genes from bulk transcriptome (high quality and low
cost)

• Input 1: The existing gene list treated as “prior knowledge”
• Input 2: A bulk RNA sequencing data set
• Output: Refined marker gene list

• Why this is possible?

• Marker genes are highly correlated in the bulk data!
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The Proposed Approach

• Why refinement?
• The gene list is typically obtained from external data sets, or

even from different species
• There exist errors and noise
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Modified Sparse PCA

• The proposed algorithm, called MarkerPen, solves a modified
sparse PCA problem:

max
X

tr(SX ) − λpG,w (X )

s.t. O ⪯ X ⪯ I, tr(X ) = 1, X ≥ 0

• pG,w (X ) =
∑

i ,j p̃G,w (Xij) is a penalty function with

p̃G,w (Xij) =


|Xij |, i , j ∈ G
w2|Xij |, i /∈ G , j /∈ G
w |Xij |, otherwise

• G is the prior gene list for some cell type C , and w ≥ 1 a
hyperparameter
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Modified Sparse PCA

• Intuition 1: We want to find genes that are highly positively
correlated

• Correlation matrix with high positive mutual correlations has a
leading eigenvector γ of positive γγT coefficients

• Intuition 2: Coefficients for genes outside the given list G are
more likely to receive larger sparsity penalty

• pG,w (X ) controls which genes are more likely to be retained
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More Results

• Published, MarkerPen-refined, and “ground truth” marker
genes

32



Summary



Summary

• Many statistical models are limited by their computational
difficulty on large-scale data sets

• The convex sparse PCA and its extensions are such examples
• The challange largely comes from the optimization problem
• We develop a general technique to transform highly

constrained optimization problems to nearly unconstrained
ones

• The new algorithm has visible advantages on computational
performance

• Enables reproducible statistical analyses on high-dimensional
genetic data
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