Gradient-based Sparse Principal Component Analysis

with Applications to Gene Co-expression Analysis

Yixuan Qiu School of Statistics and Management Shanghai University of Finance and Economics

Joint work with Dr. Kathryn Roeder, Jing Lei, and Jiebiao Wang

Department of Biostatistics

香港城市大學 City University of Hong Kong Motivation

Gradient-based Sparse PCA Algorithm

Numerical Experiment

Applications to Gene Co-expression Analysis

Summary

Motivation

An Illustrative Example

- Simulate a data matrix with n = 600 and p = 3000
- $\binom{X_1}{X_2} \sim \frac{1}{3} N\left(\binom{-2}{0}, I_2\right) + \frac{1}{3} N\left(\binom{0}{3}, I_2\right) + \frac{1}{3} N\left(\binom{2}{0}, I_2\right)$
- $X_3, ..., X_{3000} \sim N(0, 1)$, independent of (X_1, X_2)
- Clearly there are three clusters
- Imagine three cell types with two marker genes

PCA vs Sparse PCA

- Dimension reduced to 2
- Visualize PC1 vs PC2
- Left: conventional PCA
- Right: sparse PCA

Overview of Sparse PCA

- Sparse PCA = PCA + Sparsity
- Factor loadings are sparse

Overview of Sparse PCA

- Sparse PCA = PCA + Sparsity
- Factor loadings are sparse
- Why sparse?
- PCA may be inconsistent in high dimensions (Johnstone and Lu, 2009; Jung and Marron, 2009)
 - Sparsity \Rightarrow Denoising
- Each principal component only depends on a small number of variables
 - Sparsity \Rightarrow Better interpretation

Example in Johnstone and Lu (2009)

Model studied in Johnstone and Lu (2009)

$$ec{X} = vec{
ho} + \sigmaec{arepsilon}, \quad v \sim N(0,1), arepsilon \sim N(0,I_{
ho}), v \perp arepsilon$$

- $\operatorname{Cov}(X) = \rho \rho^{\mathrm{T}} + \sigma^2 I_{p}$, so $\rho / \|\rho\|$ is the leading eigenvector
- Assume that the true ρ vector is sparse:

- Collect sample X_1, \ldots, X_n and fix p/n = 2 and $\sigma = (n/p)^{0.25}$
- For an estimator $\hat{\rho}$, compute $R(\hat{\rho}, \rho) = \cos \angle(\hat{\rho}, \rho)$
 - |R| = 1, perfect estimate; |R| = 0, no information at all

PCA in High Dimensions (p = 1000)

PCA in High Dimensions (p = 2000)

PCA in High Dimensions (p = 5000)

Sparse PCA Formulations

- Many different formulations
- Nonconvex objective functions
 - The lasso approach in PCA (Jolliffe, Trendafilov, and Uddin, 2003)
 - Regression-based (Zou, Hastie, and Tibshirani, 2006)
 - Penalized matrix decomposition (Witten, Tibshirani, and Hastie, 2009)
 - Generalized power method (Journée et al., 2010)
 - Iterative thresholding method (Shen and Huang, 2008; Ma, 2013)
 - ...
- Convex objective functions
 - DSPCA (d'Aspremont et al., 2005)
 - Fantope projection and selection (Vu et al., 2013)

- Nonconvex methods
 - Fast
 - Little global convergence guarantee
 - Heavily relies on model assumptions and initial values
- Convex methods
 - Global convergence
 - Weak assumptions
 - Slow

Gradient-based Sparse PCA Algorithm

• Convex formulation proposed by Vu et al. (2013)

$$\min_{X} - \operatorname{tr}(SX) + \lambda \|X\|_{1}$$
s.t. $O \leq X \leq I \text{ and } \operatorname{tr}(X) = d$

- $\Gamma_{p \times d}$: factor loading matrix (eigenvectors, our target)
- X_{p×p}: estimator of the projection matrix Π = ΓΓ^T (almost Γ)
- *S*_{p×p}: sample covariance matrix (data)
- λ : sparsity parameter
- *d*: number of components

Intuition

Traditional PCA

 $\begin{array}{ll} \max_{\Gamma} & \mathrm{tr}(\Gamma^{\mathrm{T}}S\Gamma) & (\mathrm{maximum \ explained \ variance}) \\ \mathrm{s.t.} & \Gamma^{\mathrm{T}}\Gamma = I_d & (\mathrm{orthogonality}) \end{array}$

Adding nonconvex sparsity term

$$\begin{split} \max_{\Gamma} & \operatorname{tr}(\Gamma^{\mathrm{T}}S\Gamma) - \lambda d \|\Gamma\|_{2,0}^{2} \qquad (\text{number of nonzero rows}) \\ \text{s.t.} & \Gamma^{\mathrm{T}}\Gamma = I_{d} \end{split}$$

• Convex formulation, $X = \Gamma \Gamma^{\mathrm{T}}$

 $\max_{X} \quad \operatorname{tr}(SX) - \lambda \|X\|_{1} \quad (\text{approximation to } \|\Gamma\|_{2,0}^{2})$

s.t. $O \preceq X \preceq I$ and $\operatorname{tr}(X) = d$ (convex version of $\Gamma^{\mathrm{T}}\Gamma = I_d$)

• $tr(\Gamma^{T}S\Gamma) = tr(S\Gamma\Gamma^{T}) = tr(SX)$: explained variance

Existing Computation Method

ADMM algorithm

$$X_{k+1} = \mathcal{P}_{\mathcal{F}^d}(Y_k - U_k + \alpha S)$$
$$Y_{k+1} = \mathcal{S}_{\alpha\lambda}(X_{k+1} + U_k)$$
$$U_{k+1} = U_k + X_{k+1} - Y_{k+1}$$

- $S_{\alpha\lambda}$: soft-thresholding operator, easy
- $\mathcal{P}_{\mathcal{F}^d}$: projection operator onto $\mathcal{F}^d = \{X : O \leq X \leq I \text{ and } \operatorname{tr}(X) = d\}, \text{ hard}$
 - Requires a full eigen decomposition in each iteration
 - \$\mathcal{O}(p^3)\$ complexity

Unit: milliseconds

	expr	min	mean	median	max
Full	[1000]	150.631973	155.367721	151.872986	171.347982
Largest	[1000]	1.314212	1.686147	1.766314	1.895186
Smallest	[1000]	4.746720	5.035787	4.977878	5.373219
Full	[2000]	1146.316032	1239.926216	1169.956945	1605.542461
Largest	[2000]	7.502122	8.635942	7.897849	12.450570
Smallest	[2000]	13.257879	13.783933	13.676452	14.535811
Full	[5000]	17278.650632	17677.653736	17705.457132	18283.440595
Largest	[5000]	51.513812	57.926554	53.511937	80.093321
Smallest	[5000]	51.155627	54.081903	52.349482	64.919859

• Let $f(X) = -tr(SX) + \lambda \|X\|_1$, then the solution is

$$X_* = rgmin_{X \in \mathcal{F}^d} f(X)$$

• A constrained problem on the intersection of convex sets $\mathcal{F}^d = C_1 \cap G_1 \cap G_2$, where

•
$$C_1 = \{X : tr(X) = d\}$$

- $G_1 = \{X : g_1(X) \le 0\}, g_1(X) = \theta_{\max}(X) 1$
- $G_2 = \{X : g_2(X) \le 0\}, g_2(X) = -\theta_{\min}(X)$

A Nearly Projection-free Algorithm

- Let $\mathcal{L}(X) = f(X) + \mu \left(d_{C_1}(X) + r_1[g_1(X)]_+ + r_2[g_2(X)]_+ \right)$
- $d_{C_1}(X)$: distance between X and C_1
- $[x]_+ = \max\{x, 0\}$
- An unconstrained problem $\min_{X \in \mathcal{X}} \mathcal{L}(X)$
- Projection onto $\mathcal{X} = \{X : \|X\|_F \le \sqrt{d}\}$ is trivial

Theorem

If $\mu \ge (\sqrt{2}+1)(\|S\|_F + \lambda p + 1)\sqrt{p/(d+1)}$, $r_1 = \sqrt{d(d+1)}$, $r_2 = \sqrt{p(d+1)}$, then $\min_{X \in \mathcal{F}^d} f(X) = \min_{X \in \mathcal{X}} \mathcal{L}(X)$.

General Form

 Many statistical models need to solve a complicated constrained optimization problem

 $\min_{x\in\mathcal{K}\subset\mathcal{X}} f(x), \quad \mathcal{K}=C_1\cap\cdots\cap C_I\cap G_1\cap\cdots\cap G_m$

- Projection onto C_i is easy
- $G_i = \{x : g_i(x) \le 0\}$, and $g_i(x)$ is easy to compute
- For some constants μ and ρ_i, and some function h(·), we can construct a new function

$$\mathcal{L}(x;\mu) = f(x) + \mu h\left(d_{C_1}(x), \dots, d_{C_l}(x), \rho_1^{-1}[g_1(x)]_+, \dots, \rho_m^{-1}[g_m(x)]_+\right)$$

Under some mild conditions,

$$\min_{x\in\mathcal{K}} f(x) = \min_{x\in\mathcal{X}} \mathcal{L}(x;\mu)$$

- Many different algorithms to solve $\min_{X \in \mathcal{X}} \mathcal{L}(X)$
 - Subgradient descent
 - Proximal-proximal gradient method (Ryu and Yin, 2019)
- For the proximal-proximal gradient method, after T iterations,

$$\mathcal{L}(\hat{X}) \leq \min_{X \in \mathcal{X}} \mathcal{L}(X) + rac{C}{T} \quad ext{and} \quad d_{\mathcal{F}^d}(\hat{X}) \leq rac{C}{T},$$

where C is some constant.

- Assumptions
 - Sparsity: the factor loading matrix has at most *s* nonzero rows
 - Identifiability: the *d*-th eigengap δ_d = θ_d(Σ) − θ_{d+1}(Σ) > 0
 - Sub-exponential elements:

 $\max_{i,j} P(|S_{ij} - \Sigma_{ij}| \ge u) \le 2 \exp(-4nu^2/\sigma^2)$ for all $u \le \sigma$

Theorem

Take $\lambda = \sigma \sqrt{\log(p)/n}$, and then with probability at least $1 - 2/p^2$,

$$\|\hat{X} - \Pi\|_F \leq \frac{4\sigma s \sqrt{\log(p)}}{\delta_d \sqrt{n}} + \frac{\sqrt{2C/\delta_d}}{\sqrt{T}} + \frac{C}{T}.$$

Interpretation: statistical error + optimization error + feasibility error

Numerical Experiment

Computational Efficiency

Model setting

Computational Efficiency

Comparing with the existing ADMM algorithm

Applications to Gene Co-expression Analysis

- Brain gene expression data collected by the CommonMind Consortium (Fromer et al., 2016)
- To detect groups of genes such that genes in the same group have high mutual correlations
- *p* = 16,423 genes from 258 schizophrenia subjects and 279 control subjects
- Compute d = 5 sparse principal components
- Cluster selected genes into k = 5 groups based on the factor loadings

Gene Co-expression Network

Clustering result for the schizophrenia group

Gene Co-expression Network

Differential analysis, control vs schizophrenia

- Cell-type-specific genes, also known as marker genes
- Highly expressed in one cell type, but lowly expressed in other types
- Help to annotate cell clusters and study cellular composition of bulk tissues
- Key to the analysis of RNA transcriptional data

Application II - Identify Cell-type-specific Marker Genes

- Typically identified using single-cell RNA sequencing data
- Challenges
 - Data availability and cost
 - Data quality and noise

(Figure from Polioudakis et al., 2019, Neuron.)

- Develop semi-supervised statistical technique to identify marker genes from bulk transcriptome (high quality and low cost)
- Input 1: The existing gene list treated as "prior knowledge"
- Input 2: A bulk RNA sequencing data set
- Output: Refined marker gene list

- Develop semi-supervised statistical technique to identify marker genes from bulk transcriptome (high quality and low cost)
- Input 1: The existing gene list treated as "prior knowledge"
- Input 2: A bulk RNA sequencing data set
- Output: Refined marker gene list
- Why this is possible?

- Develop semi-supervised statistical technique to identify marker genes from bulk transcriptome (high quality and low cost)
- Input 1: The existing gene list treated as "prior knowledge"
- Input 2: A bulk RNA sequencing data set
- Output: Refined marker gene list
- Why this is possible?
- Marker genes are highly correlated in the bulk data!

The Proposed Approach

- Why refinement?
 - The gene list is typically obtained from external data sets, or even from different species
 - There exist errors and noise

Modified Sparse PCA

 The proposed algorithm, called MarkerPen, solves a modified sparse PCA problem:

$$\begin{array}{ll} \max_{X} & \operatorname{tr}(SX) - \lambda p_{G,w}(X) \\ \text{s.t.} & O \leq X \leq I, \ \operatorname{tr}(X) = 1, \ X \geq 0 \end{array}$$

• $p_{G,w}(X) = \sum_{i,j} \tilde{p}_{G,w}(X_{ij})$ is a penalty function with

$$ilde{p}_{G,w}(X_{ij}) = egin{cases} |X_{ij}|, & i,j \in G \ w^2 |X_{ij}|, & i
otin G, j
otin G \ w |X_{ij}|, & otherwise \end{cases}$$

■ *G* is the prior gene list for some cell type *C*, and *w* ≥ 1 a hyperparameter

- Intuition 1: We want to find genes that are highly positively correlated
 - Correlation matrix with high positive mutual correlations has a leading eigenvector γ of positive $\gamma\gamma^{\rm T}$ coefficients

- Intuition 1: We want to find genes that are highly positively correlated
 - Correlation matrix with high positive mutual correlations has a leading eigenvector γ of positive $\gamma\gamma^{\rm T}$ coefficients
- Intuition 2: Coefficients for genes outside the given list G are more likely to receive larger sparsity penalty
 - $p_{G,w}(X)$ controls which genes are more likely to be retained

More Results

Published, MarkerPen-refined, and "ground truth" marker genes

Summary

Summary

- Many statistical models are limited by their computational difficulty on large-scale data sets
- The convex sparse PCA and its extensions are such examples
- The challange largely comes from the optimization problem
- We develop a general technique to transform highly constrained optimization problems to nearly unconstrained ones
- The new algorithm has visible advantages on computational performance
- Enables reproducible statistical analyses on high-dimensional genetic data

Qiu, Y., Wang, J., Lei, J., and Roeder, K. (2021). Identification of Cell-type-specific Marker Genes from Co-expression Patterns in Tissue Samples. *Bioinformatics*.

Qiu, Y., Lei, J., and Roeder, K. (2022+). Gradient-based Sparse Principal Component Analysis with Extensions to Online Learning. *Biometrika*.

R packages available at https://statr.me/research/

