Gradient-based Sparse Principal Component
Analysis

with Applications to Gene Co-expression Analysis

Yixuan Qiu

School of Statistics and Management

Shanghai University of Finance and Economics

Joint work with Dr. Kathryn Roeder, Jing Lei, and Jiebiao Wang

BioStat Seminar @ Department of Biostatistics
EL
ity Univrsityof Hong Kong



Motivation

Gradient-based Sparse PCA Algorithm
Numerical Experiment

Applications to Gene Co-expression Analysis

Summary



Motivation



An lllustrative Example

= Simulate a data matrix with n = 600 and p = 3000
() ~ 3N (@) )+ 3N((3). ) + 3N ((3) 1)
= X3,...,X3000 ~ /V(O7 1), independent of (Xl,XQ)
= Clearly there are three clusters

Imagine three cell types with two marker genes
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PCA vs Sparse PCA

= Dimension reduced to 2
Visualize PC1 vs PC2

= Left: conventional PCA
= Right: sparse PCA

PCA Sparse PCA
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Overview of Sparse PCA

= Sparse PCA = PCA + Sparsity

= Factor loadings are sparse



Overview of Sparse PCA

= Sparse PCA = PCA + Sparsity

= Factor loadings are sparse

= Why sparse?
= PCA may be inconsistent in high dimensions (Johnstone and
Lu, 2009; Jung and Marron, 2009)
= Sparsity = Denoising

= Each principal component only depends on a small number of
variables

= Sparsity = Better interpretation



Example in Johnstone and Lu (2009)

= Model studied in Johnstone and Lu (2009)
X =vi+a&, v~ N(O,1),e~NO,I) v Le

= Cov(X) = ppT + 021, so p/||p| is the leading eigenvector
= Assume that the true p vector is sparse:
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= Collect sample Xi,..., X, and fix p/n =2 and o = (n/p)°®?>
= For an estimator p, compute R(p, p) = cos Z(p, p)
= |R| =1, perfect estimate; |R| = 0, no information at all



PCA in High Dimensions (p = 1000)

n =500, p = 1000, R(PCA) = 0.176, R(SPCA) = 0.893

True PC
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PCA in High Dimensions (p = 2000)

n = 1000, p = 2000, R(PCA) = -0.015, R(SPCA) = 0.931
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PCA in High Dimensions (p = 5000)
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Sparse PCA Formulations

= Many different formulations
= Nonconvex objective functions
= The lasso approach in PCA (Jolliffe, Trendafilov, and Uddin,
2003)
= Regression-based (Zou, Hastie, and Tibshirani, 2006)
= Penalized matrix decomposition (Witten, Tibshirani, and
Hastie, 2009)
= Generalized power method (Journée et al., 2010)
= |terative thresholding method (Shen and Huang, 2008; Ma,
2013)

= Convex objective functions

= DSPCA (d'Aspremont et al., 2005)
= Fantope projection and selection (Vu et al., 2013)
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Computation of Sparse PCA

= Nonconvex methods

= Fast

= Little global convergence guarantee

= Heavily relies on model assumptions and initial values
= Convex methods

= Global convergence

= Weak assumptions

= Slow
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Gradient-based Sparse PCA
Algorithm




Model Setting

= Convex formulation proposed by Vu et al. (2013)
min  —tr(SX) + Al X]1
st. O=X=</landtr(X)=d
= [pxq: factor loading matrix (eigenvectors, our target)
» Xp,xp: estimator of the projection matrix M =TT (almost I')
= Spxp: sample covariance matrix (data)

= )\ sparsity parameter

= d: number of components
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= Traditional PCA
max tr(rTsr)
st T =1y
= Adding nonconvex sparsity term
max  x(rTST) = Ad|I 3,
st. =1y
» Convex formulation, X =TT
max tr(SX) — A X]1
st. O=X=landtr(X)=d
= tr(ITST) = tr(SITT) = tr(SX): explained variance

13



Existing Computation Method

= ADMM algorithm

Xk+1 = P]:d(Yk — Uk + OéS)
Yit1 = Sox(Xk41 + Uk)
Ukt1 = Uk + Xkr1 — Yirt

= S, soft-thresholding operator, easy

= Prq: projection operator onto
Fd={X:0=X=1Iand tr(X) = d}, hard
= Requires a full eigen decomposition in each iteration
= O(p®) complexity
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Timing Comparison

Unit: milliseconds

Full
Largest
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Full
Largest
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Full
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expr
[1000]
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Optimization on Intersection of Convex Sets

s Let f(X) = —tr(SX) + A|| X]|1, then the solution is
X, = arg min f(X)
XeFd

= A constrained problem on the intersection of convex sets
F4 = Cn G N Gy, where

= G ={X:tr(X)=d}
¢ G = (X @ (X) <0}, g1(X) = fmae(X) — 1
= G = {X: g@(X) <0}, g@X) = —Omin(X)
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A Nearly Projection-free Algorithm

= Let L(X) = f(X) + pu (de, (X) + nlen(X)]+ + r2[g2(X)]+)
= dc,(X): distance between X and G

= [x]+ = max{x,0}

= An unconstrained problem minxecxy L£(X)

= Projection onto X = {X : ||X||r < V/d} is trivial

Theorem

If > (V2+1D)(ISIlF+Xp+1)/p/(d+1), n = /d(d+1),
rp = /p(d + 1), then minycra f(X) = minxex L(X).
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General Form

Many statistical models need to solve a complicated

constrained optimization problem

XEF?CIQX flx), K=Gn---nGNGN---NGyp

Projection onto C; is easy
Gi = {x : gi(x) < 0}, and gi(x) is easy to compute
For some constants i and pj, and some function h(-), we can

construct a new function
L(x; p)
=F(x) + ph (de, (%), - -, dc (%), o1 g1 () -, P lgm(X)] )
Under some mild conditions,
min f(x) = min L(x; )
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Convergence Analysis

= Many different algorithms to solve minxcy £(X)

= Subgradient descent
= Proximal-proximal gradient method (Ryu and Yin, 2019)

= For the proximal-proximal gradient method, after T iterations,
L(X) < L(X) + + & and d (X) <
)r(neln T an [ Fa <

where C is some constant.
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Statistical Property

= Assumptions
= Sparsity: the factor loading matrix has at most s nonzero rows
= Identifiability: the d-th eigengap dyg = 04(X) — 04+1(X) >0
= Sub-exponential elements:
max;; P(|S; — ;| > u) < 2exp(—4nu?/o?) forall u < o

Theorem
Take A = o+/log(p)/n, and then with probability at least 1 —2/p?,

40s+/log(p) = /2C/dq4 N €
dqv/n VT T

IX =Nl <

= Interpretation: statistical error + optimization error +

feasibility error
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Numerical Experiment




Computational Efficiency

= Model setting
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Computational Efficiency

= Comparing with the existing ADMM algorithm

Estimation Error
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Applications to Gene Co-expression
Analysis




Application | - Gene Co-expression Network

= Brain gene expression data collected by the CommonMind
Consortium (Fromer et al., 2016)

= To detect groups of genes such that genes in the same group
have high mutual correlations

= p = 16,423 genes from 258 schizophrenia subjects and 279
control subjects

= Compute d = 5 sparse principal components

» Cluster selected genes into k = 5 groups based on the factor
loadings

23



Gene Co-expression Network

= Clustering result for the schizophrenia group

Sample [ |

Correlation Factor Loading
Coefficient 04 -0.2 0.0 02

I 10
o | II

00

N e
—

IS

Index of Components
©
=

[
o

50 150

100
Index of Reordered Genes

20 40 60 80 100 120 140 160 180

24



Gene Co-expression Network

= Differential analysis, control vs schizophrenia
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Application Il - Identify Cell-type-specific Marker Genes

= Cell-type-specific genes, also known as marker genes

= Highly expressed in one cell type, but lowly expressed in other
types

= Help to annotate cell clusters and study cellular composition
of bulk tissues

= Key to the analysis of RNA transcriptional data
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Application Il - Identify Cell-type-specific Marker Genes

= Typically identified using single-cell RNA sequencing data
= Challenges

= Data availability and cost
= Data quality and noise

4 donors Microdissection of germinal zones
GW17-18 from developing cortex \

@

Dissociation

Excitatory deep Iayer (5OXS)

Drop-seq 175 Interneurons (DLX1, DLX2, LHXG, DLX5)
§ Maturing upper enviched ST
(PPPIR17, SSTR2, EOMES, P
amnng excitatory
igrating excitatory

svz ¢ Sy
o I~ S
PP = 4 l
el
isvz [ ke 5
vz & 5 Analysis
ycling progenitors

- PCs (PTPRZ1, OLIG
A He N E—
o

E P M Cells.

(Figure from Polioudakis et al., 2019, Neuron.)

27



The Proposed Approach

= Develop semi-supervised statistical technique to identify
marker genes from bulk transcriptome (high quality and low

cost)
= |nput 1. The existing gene list treated as “prior knowledge"
= Input 2: A bulk RNA sequencing data set

= Qutput: Refined marker gene list

28
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The Proposed Approach

= Develop semi-supervised statistical technique to identify
marker genes from bulk transcriptome (high quality and low

cost)
= |nput 1. The existing gene list treated as “prior knowledge"
= Input 2: A bulk RNA sequencing data set

= Qutput: Refined marker gene list
= Why this is possible?

= Marker genes are highly correlated in the bulk datal!
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The Proposed Approach

= Why refinement?
= The gene list is typically obtained from external data sets, or
even from different species
= There exist errors and noise
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Modified Sparse PCA

= The proposed algorithm, called , solves a modified
sparse PCA problem:

max tr(SX) — Apg,w(X)
st 0= X</ tr(X)=1, X >0

» pw(X) =3 Be,w(Xj) is a penalty function with

Xy, iJj€EG
Pow(Xy) = yw?Xyl, i¢Gj¢G
w|Xj|, otherwise

= G is the prior gene list for some cell type C, and w > 1 a
hyperparameter
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Modified Sparse PCA

= Intuition 1: We want to find genes that are highly positively
correlated

= Correlation matrix with high positive mutual correlations has a
leading eigenvector 7 of positive yyT coefficients
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Modified Sparse PCA

= Intuition 1: We want to find genes that are highly positively
correlated

= Correlation matrix with high positive mutual correlations has a
leading eigenvector 7 of positive yyT coefficients

= Intuition 2: Coefficients for genes outside the given list G are
more likely to receive larger sparsity penalty

= pc.w(X) controls which genes are more likely to be retained
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Summary




= Many statistical models are limited by their computational
difficulty on large-scale data sets

= The convex sparse PCA and its extensions are such examples
= The challange largely comes from the optimization problem

= We develop a general technique to transform highly
constrained optimization problems to nearly unconstrained
ones

= The new algorithm has visible advantages on computational
performance

= Enables reproducible statistical analyses on high-dimensional
genetic data
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