Gradient-based Sparse Principal Component Analysis

with Applications to Gene Co-expression Analysis

Yixuan Qiu
School of Statistics and Management
Shanghai University of Finance and Economics

Joint work with Dr. Kathryn Roeder, Jing Lei, and Jiebiao Wang

Outline

Motivation

Gradient-based Sparse PCA Algorithm

Numerical Experiment

Applications to Gene Co-expression Analysis

Summary

Motivation

An Illustrative Example

- Simulate a data matrix with $n=600$ and $p=3000$
- $\binom{X_{1}}{X_{2}} \sim \frac{1}{3} N\left(\binom{-2}{0}, I_{2}\right)+\frac{1}{3} N\left(\binom{0}{3}, I_{2}\right)+\frac{1}{3} N\left(\binom{2}{0}, I_{2}\right)$
- $X_{3}, \ldots, X_{3000} \sim N(0,1)$, independent of $\left(X_{1}, X_{2}\right)$
- Clearly there are three clusters
- Imagine three cell types with two marker genes

PCA vs Sparse PCA

- Dimension reduced to 2
- Visualize PC1 vs PC2
- Left: conventional PCA
- Right: sparse PCA

Overview of Sparse PCA

- Sparse PCA = PCA + Sparsity
- Factor loadings are sparse

Overview of Sparse PCA

- Sparse PCA = PCA + Sparsity
- Factor loadings are sparse
- Why sparse?
- PCA may be inconsistent in high dimensions (Johnstone and Lu, 2009; Jung and Marron, 2009)
- Sparsity \Rightarrow Denoising
- Each principal component only depends on a small number of variables
- Sparsity \Rightarrow Better interpretation

Example in Johnstone and Lu (2009)

- Model studied in Johnstone and Lu (2009)

$$
\vec{X}=v \vec{\rho}+\sigma \vec{\varepsilon}, \quad v \sim N(0,1), \varepsilon \sim N\left(0, I_{p}\right), v \perp \varepsilon
$$

- $\operatorname{Cov}(X)=\rho \rho^{\mathrm{T}}+\sigma^{2} I_{p}$, so $\rho /\|\rho\|$ is the leading eigenvector
- Assume that the true ρ vector is sparse:

- Collect sample X_{1}, \ldots, X_{n} and fix $p / n=2$ and $\sigma=(n / p)^{0.25}$
- For an estimator $\hat{\rho}$, compute $R(\hat{\rho}, \rho)=\cos \angle(\hat{\rho}, \rho)$
- $|R|=1$, perfect estimate; $|R|=0$, no information at all

PCA in High Dimensions $(p=1000)$

PCA in High Dimensions $(p=2000)$

PCA in High Dimensions $(p=5000)$

Sparse PCA Formulations

- Many different formulations
- Nonconvex objective functions
- The lasso approach in PCA (Jolliffe, Trendafilov, and Uddin, 2003)
- Regression-based (Zou, Hastie, and Tibshirani, 2006)
- Penalized matrix decomposition (Witten, Tibshirani, and Hastie, 2009)
- Generalized power method (Journée et al., 2010)
- Iterative thresholding method (Shen and Huang, 2008; Ma, 2013)
- ...
- Convex objective functions
- DSPCA (d'Aspremont et al., 2005)
- Fantope projection and selection (Vu et al., 2013)

Computation of Sparse PCA

- Nonconvex methods
- Fast
- Little global convergence guarantee
- Heavily relies on model assumptions and initial values
- Convex methods
- Global convergence
- Weak assumptions
- Slow

Gradient-based Sparse PCA
Algorithm

Model Setting

- Convex formulation proposed by Vu et al. (2013)

$$
\begin{array}{ll}
\min _{X} & -\operatorname{tr}(S X)+\lambda\|X\|_{1} \\
\text { s.t. } & O \preceq X \preceq I \text { and } \operatorname{tr}(X)=d
\end{array}
$$

- $\Gamma_{p \times d}$: factor loading matrix (eigenvectors, our target)
- $X_{p \times p}$: estimator of the projection matrix $\Pi=\Gamma \Gamma^{\mathrm{T}}$ (almost Γ)
- $S_{p \times p}$: sample covariance matrix (data)
- λ : sparsity parameter
- d : number of components

Intuition

- Traditional PCA

$$
\begin{array}{lll}
\max _{\Gamma} & \operatorname{tr}\left(\Gamma^{\mathrm{T}} S \Gamma\right) & \text { (maximum explained variance) } \\
\text { s.t. } & \Gamma^{\mathrm{T}} \Gamma=I_{d} & \text { (orthogonality) }
\end{array}
$$

- Adding nonconvex sparsity term

$$
\begin{array}{ll}
\max _{\Gamma} & \operatorname{tr}\left(\Gamma^{\mathrm{T}} S \Gamma\right)-\lambda d\|\Gamma\|_{2,0}^{2} \quad \text { (number of nonzero rows) } \\
\text { s.t. } & \Gamma^{\mathrm{T}} \Gamma=I_{d}
\end{array}
$$

- Convex formulation, $X=\Gamma \Gamma^{\mathrm{T}}$
$\max _{X} \operatorname{tr}(S X)-\lambda\|X\|_{1} \quad$ (approximation to $\|\Gamma\|_{2,0}^{2}$)
s.t. $O \preceq X \preceq I$ and $\operatorname{tr}(X)=d \quad$ (convex version of $\Gamma^{\mathrm{T}} \Gamma=I_{d}$)
- $\operatorname{tr}\left(\Gamma^{\mathrm{T}} S \Gamma\right)=\operatorname{tr}\left(S \Gamma \Gamma^{\mathrm{T}}\right)=\operatorname{tr}(S X)$: explained variance

Existing Computation Method

- ADMM algorithm

$$
\begin{aligned}
X_{k+1} & =\mathcal{P}_{\mathcal{F}^{d}}\left(Y_{k}-U_{k}+\alpha S\right) \\
Y_{k+1} & =\mathcal{S}_{\alpha \lambda}\left(X_{k+1}+U_{k}\right) \\
U_{k+1} & =U_{k}+X_{k+1}-Y_{k+1}
\end{aligned}
$$

- $\mathcal{S}_{\alpha \lambda}$: soft-thresholding operator, easy
- $\mathcal{P}_{\mathcal{F}^{d}}$: projection operator onto
$\mathcal{F}^{d}=\{X: O \preceq X \preceq I$ and $\operatorname{tr}(X)=d\}$, hard
- Requires a full eigen decomposition in each iteration
- $\mathcal{O}\left(p^{3}\right)$ complexity

Timing Comparison

Unit: milliseconds

	expr	min	mean	median	max
Full	$[1000]$	150.631973	155.367721	151.872986	171.347982
Largest	$[1000]$	1.314212	1.686147	1.766314	1.895186
Smallest	$[1000]$	4.746720	5.035787	4.977878	5.373219
Full	$[2000]$	1146.316032	1239.926216	1169.956945	1605.542461
Largest	$[2000]$	7.502122	8.635942	7.897849	12.450570
Smallest	$[2000]$	13.257879	13.783933	13.676452	14.535811
Full	$[5000]$	17278.650632	17677.653736	17705.457132	18283.440595
Largest	$[5000]$	51.513812	57.926554	53.511937	80.093321
Smallest	$[5000]$	51.155627	54.081903	52.349482	64.919859

Optimization on Intersection of Convex Sets

- Let $f(X)=-\operatorname{tr}(S X)+\lambda\|X\|_{1}$, then the solution is

$$
X_{*}=\underset{X \in \mathcal{F}^{d}}{\arg \min } f(X)
$$

- A constrained problem on the intersection of convex sets $\mathcal{F}^{d}=C_{1} \cap G_{1} \cap G_{2}$, where
- $C_{1}=\{X: \operatorname{tr}(X)=d\}$
- $G_{1}=\left\{X: g_{1}(X) \leq 0\right\}, g_{1}(X)=\theta_{\max }(X)-1$
- $G_{2}=\left\{X: g_{2}(X) \leq 0\right\}, g_{2}(X)=-\theta_{\min }(X)$

A Nearly Projection-free Algorithm

- Let $\mathcal{L}(X)=f(X)+\mu\left(d_{c_{1}}(X)+r_{1}\left[g_{1}(X)\right]_{+}+r_{2}\left[g_{2}(X)\right]_{+}\right)$
- $d_{C_{1}}(X)$: distance between X and C_{1}
- $[x]_{+}=\max \{x, 0\}$
- An unconstrained problem $\min _{X \in \mathcal{X}} \mathcal{L}(X)$
- Projection onto $\mathcal{X}=\left\{X:\|X\|_{F} \leq \sqrt{d}\right\}$ is trivial

Theorem

If $\mu \geq(\sqrt{2}+1)\left(\|S\|_{F}+\lambda p+1\right) \sqrt{p /(d+1)}, r_{1}=\sqrt{d(d+1)}$,
$r_{2}=\sqrt{p(d+1)}$, then $\min _{X \in \mathcal{F}^{d}} f(X)=\min _{X \in \mathcal{X}} \mathcal{L}(X)$.

General Form

- Many statistical models need to solve a complicated constrained optimization problem

$$
\min _{x \in \mathcal{K} \subset \mathcal{X}} f(x), \quad \mathcal{K}=C_{1} \cap \cdots \cap C_{l} \cap G_{1} \cap \cdots \cap G_{m}
$$

- Projection onto C_{i} is easy
- $G_{i}=\left\{x: g_{i}(x) \leq 0\right\}$, and $g_{i}(x)$ is easy to compute
- For some constants μ and ρ_{i}, and some function $h(\cdot)$, we can construct a new function

$$
\begin{aligned}
& \mathcal{L}(x ; \mu) \\
= & f(x)+\mu h\left(d_{C_{1}}(x), \ldots, d_{C_{l}}(x), \rho_{1}^{-1}\left[g_{1}(x)\right]_{+}, \ldots, \rho_{m}^{-1}\left[g_{m}(x)\right]_{+}\right)
\end{aligned}
$$

- Under some mild conditions,

$$
\min _{x \in \mathcal{K}} f(x)=\min _{x \in \mathcal{X}} \mathcal{L}(x ; \mu)
$$

Convergence Analysis

- Many different algorithms to solve $\min _{X \in \mathcal{X}} \mathcal{L}(X)$
- Subgradient descent
- Proximal-proximal gradient method (Ryu and Yin, 2019)
- For the proximal-proximal gradient method, after T iterations,

$$
\mathcal{L}(\hat{X}) \leq \min _{X \in \mathcal{X}} \mathcal{L}(X)+\frac{C}{T} \quad \text { and } \quad d_{\mathcal{F d}}(\hat{X}) \leq \frac{C}{T},
$$

where C is some constant.

Statistical Property

- Assumptions
- Sparsity: the factor loading matrix has at most s nonzero rows
- Identifiability: the d-th eigengap $\delta_{d}=\theta_{d}(\Sigma)-\theta_{d+1}(\Sigma)>0$
- Sub-exponential elements:

$$
\max _{i, j} P\left(\left|S_{i j}-\Sigma_{i j}\right| \geq u\right) \leq 2 \exp \left(-4 n u^{2} / \sigma^{2}\right) \text { for all } u \leq \sigma
$$

Theorem

Take $\lambda=\sigma \sqrt{\log (p) / n}$, and then with probability at least $1-2 / p^{2}$,

$$
\|\hat{X}-\Pi\|_{F} \leq \frac{4 \sigma s \sqrt{\log (p)}}{\delta_{d} \sqrt{n}}+\frac{\sqrt{2 C / \delta_{d}}}{\sqrt{T}}+\frac{C}{T}
$$

- Interpretation: statistical error + optimization error + feasibility error

Numerical Experiment

Computational Efficiency

- Model setting

Computational Efficiency

- Comparing with the existing ADMM algorithm

Applications to Gene Co-expression

 Analysis
Application I - Gene Co-expression Network

- Brain gene expression data collected by the CommonMind Consortium (Fromer et al., 2016)
- To detect groups of genes such that genes in the same group have high mutual correlations
- $p=16,423$ genes from 258 schizophrenia subjects and 279 control subjects
- Compute $d=5$ sparse principal components
- Cluster selected genes into $k=5$ groups based on the factor loadings

Gene Co-expression Network

- Clustering result for the schizophrenia group

Gene Co-expression Network

- Differential analysis, control vs schizophrenia

Sample
Correlation
Coefficient
-1.00
0.75
0.50
0.25
0.00
-0.25

Application II - Identify Cell-type-specific Marker Genes

- Cell-type-specific genes, also known as marker genes
- Highly expressed in one cell type, but lowly expressed in other types
- Help to annotate cell clusters and study cellular composition of bulk tissues
- Key to the analysis of RNA transcriptional data

Application II - Identify Cell-type-specific Marker Genes

- Typically identified using single-cell RNA sequencing data
- Challenges
- Data availability and cost
- Data quality and noise

(Figure from Polioudakis et al., 2019, Neuron.)

The Proposed Approach

- Develop semi-supervised statistical technique to identify marker genes from bulk transcriptome (high quality and low cost)
- Input 1: The existing gene list treated as "prior knowledge"
- Input 2: A bulk RNA sequencing data set
- Output: Refined marker gene list

The Proposed Approach

- Develop semi-supervised statistical technique to identify marker genes from bulk transcriptome (high quality and low cost)
- Input 1: The existing gene list treated as "prior knowledge"
- Input 2: A bulk RNA sequencing data set
- Output: Refined marker gene list
- Why this is possible?

The Proposed Approach

- Develop semi-supervised statistical technique to identify marker genes from bulk transcriptome (high quality and low cost)
- Input 1: The existing gene list treated as "prior knowledge"
- Input 2: A bulk RNA sequencing data set
- Output: Refined marker gene list
- Why this is possible?
- Marker genes are highly correlated in the bulk data!

The Proposed Approach

- Why refinement?
- The gene list is typically obtained from external data sets, or even from different species
- There exist errors and noise

Modified Sparse PCA

- The proposed algorithm, called MarkerPen, solves a modified sparse PCA problem:

$$
\begin{array}{cl}
\max _{X} & \operatorname{tr}(S X)-\lambda p_{G, w}(X) \\
\text { s.t. } & O \preceq X \preceq I, \operatorname{tr}(X)=1, X \geq 0
\end{array}
$$

- $p_{G, w}(X)=\sum_{i, j} \tilde{p}_{G, w}\left(X_{i j}\right)$ is a penalty function with

$$
\tilde{p}_{G, w}\left(X_{i j}\right)= \begin{cases}\left|X_{i j}\right|, & i, j \in G \\ w^{2}\left|X_{i j}\right|, & i \notin G, j \notin G \\ w\left|X_{i j}\right|, & \text { otherwise }\end{cases}
$$

- G is the prior gene list for some cell type C, and $w \geq 1$ a hyperparameter

Modified Sparse PCA

- Intuition 1: We want to find genes that are highly positively correlated
- Correlation matrix with high positive mutual correlations has a leading eigenvector γ of positive $\gamma \gamma^{\mathrm{T}}$ coefficients

Modified Sparse PCA

- Intuition 1: We want to find genes that are highly positively correlated
- Correlation matrix with high positive mutual correlations has a leading eigenvector γ of positive $\gamma \gamma^{\mathrm{T}}$ coefficients
- Intuition 2: Coefficients for genes outside the given list G are more likely to receive larger sparsity penalty
- $p_{G, w}(X)$ controls which genes are more likely to be retained

More Results

- Published, MarkerPen-refined, and "ground truth" marker genes

Summary

Summary

- Many statistical models are limited by their computational difficulty on large-scale data sets
- The convex sparse PCA and its extensions are such examples
- The challange largely comes from the optimization problem
- We develop a general technique to transform highly constrained optimization problems to nearly unconstrained ones
- The new algorithm has visible advantages on computational performance
- Enables reproducible statistical analyses on high-dimensional genetic data

References

Qiu, Y., Wang, J., Lei, J., and Roeder, K. (2021). Identification of Cell-type-specific Marker Genes from Co-expression Patterns in Tissue Samples. Bioinformatics.

Qiu, Y., Lei, J., and Roeder, K. (2022+). Gradient-based Sparse Principal Component Analysis with Extensions to Online Learning. Biometrika.

R packages available at https://statr.me/research/

THANR YOU! --- - - - =-

