
Efficient, Stable, and Analytic Differentiation
of the Sinkhorn Loss

Yixuan Qiu

Shanghai University of Finance and Economics

The 9th RUC International Forum on Statistics

Joint work with Haoyun Yin and Xiao Wang

1



Outline

Motivation and Problem Setting

Our Contribution

Application and Experiments

2



Motivation and Problem Setting



Statistical Divergence

• Given two distributions p and q, define a function D(p, q)
such that:

• D(p, q) ≥ 0 for all p and q
• D(p, q) = 0⇔ p = q

• Examples:
• Kullback–Leibler divergence

DKL(p∥q) =
∫

p(x) log
(

p(x)
q(x)

)
dx

• Squared Hellinger distance

H2(p, q) = 2
∫ (√

p(x)−
√

q(x)
)2

dx

• Wasserstein distance

Wr (p, q) =
(

inf
γ∈Π(p,q)

E(X ,Y )∼γ∥X − Y ∥r
)1/r

• ...

3



Statistical Divergence

• Given two distributions p and q, define a function D(p, q)
such that:

• D(p, q) ≥ 0 for all p and q
• D(p, q) = 0⇔ p = q

• Examples:
• Kullback–Leibler divergence

DKL(p∥q) =
∫

p(x) log
(

p(x)
q(x)

)
dx

• Squared Hellinger distance

H2(p, q) = 2
∫ (√

p(x)−
√

q(x)
)2

dx

• Wasserstein distance

Wr (p, q) =
(

inf
γ∈Π(p,q)

E(X ,Y )∼γ∥X − Y ∥r
)1/r

• ...
3



Problem Setting

• Given data X1, . . . , Xn ∼ p∗ and a model pθ

• Task 1: Evaluate or estimate the divergence D(p∗, pθ)
• A measure of goodness-of-fit
• Testing distributional difference

• Task 2: Evaluate or estimate the gradient ∇θD(p∗, pθ)
• This gradient makes pθ learnable
• Enables us to find a good model pθ that minimizes D(p∗, pθ)

4



Wasserstein Distance

• Wasserstein distance is a popular metric to quantify the
difference between distributions

• Inspired many breakthroughs in deep learning such as the
Wasserstein generative adversarial networks (WGAN)

• However, its computation is notoriously difficult

5



Wasserstein Distance

• Given two discrete distributions X ∼ p and Y ∼ q

P(X = xi) = ai , P(Y = yj) = bi ,
n∑

i=1
ai =

m∑
j=1

bj = 1

• Define the cost matrix M with Mij = ∥xi − yj∥r

• The r -Wasserstein distance between p and q is

Wr (p, q) =
[

min
P∈Π(a,b)

⟨P, M⟩
]1/r

Π(a, b) = {T ∈ Rn×m
+ : T1m = a, T T1n = b}

• Solving P is also called the optimal transport (OT) problem

6



Sinkhorn Loss as Approximate OT

• Assuming m = n, standard linear programming solvers cost
O(n3 log n)

• Cuturi (2013) proposes the entropic-regularized OT

min
T∈Π(a,b)

⟨T , M⟩−λ−1h(T ), h(T ) =
n∑

i=1

m∑
j=1

Tij(1− log Tij)

• Let T ∗
λ be the unique global solution, and then the Sinkhorn

loss is defined as

Sλ(M, a, b) = ⟨T ∗
λ , M⟩

7



Sinkhorn Loss as Approximate OT

• Luise et al. (2018) shows that

|Sλ(M, a, b)−W r
r (p, q)| ≤ Ce−λ

• For smaller and smaller λ−1, Sλ(M, a, b) is closer to the
Wasserstein distance

0 20 40 60
0

10

20

30

40

50

60

70

80

90
Wasserstein Sinkhorn 0.1 Sinkhorn 0.01 Sinkhorn 0.001 Sinkhorn 0.0001

8



Forward and Backward Pass

• Corresponding to the two tasks in the problem setting
• Forward pass of Sinkhorn loss

• Compute Sλ(M, a, b)
• Existing method: Sinkhorn’s algorithm

• Backward pass of Sinkhorn loss
• Compute ∇MSλ(M, a, b)
• Existing method: automatic differentiation

9



Sinkhorn’s Algorithm

• Cuturi (2013) shows that T ∗
λ can be expressed as

T ∗
λ = diag(u∗)Mediag(v∗)

for some vectors u∗ and v∗, where Me =
(
e−λMij

)
• Interestingly, u∗ and v∗ can be solved using the iterations

u(k+1) ← a ⊙ [Mev (k)]−1, v (k+1) ← b ⊙ [MT
e u(k+1)]−1

• Notation: for vectors u = (u1, . . . , uk)T, v = (v1, . . . , vk)T,

u−1 = (u−1
1 , . . . , u−1

k )T, u ⊙ v = (u1v1, . . . , ukvk)T

10



Automatic Differentiation

• Note that the iterations in Sinkhorn’s algorithm are all
differentiable

• So one can use the automatic differentiation technique to
compute ∇MSλ(M, a, b)

• This requires “unrolling” the iterations
• Genevay et al. (2018) uses this method to learn generative

models with the Sinkhorn loss

11



Our Contribution



Issues of Sinkhorn’s Algorithm

• Numerical instability
• Me may underflow when λ is large
• Making Mev (k) and MT

e u(k+1) close to zero
• u(k+1) and v (k+1) overflow

• Many works to improve
• Log-domain iterations
• Stabilized sparse scaling (Schmitzer, 2019)

12



Issues of Sinkhorn’s Algorithm

• May be slow to converge
• Especially for large λ

0 20 40 60
0

10

20

30

40

50

60

70

80

90
Truth Sinkhorn Sinkhorn-log Stabilized Greenkhorn L-BFGS

13



Dual Problem

• The dual problem of the Sinkhorn optimization is
maxα,β L(α, β), where α ∈ Rn, β ∈ Rm,

L(α, β) = αTa + βTb − λ−1
n∑

i=1

m∑
j=1

e−λ(Mij −αi −βj )

• This dual maximization problem is concave and unconstrained
• Once we get the optimal point (α∗, β∗), T ∗

λ is recovered as

T ∗
λ = eλ[α∗ ⊕ β∗ −M], eλ[A] = (eλAij )

• Notation: for vectors u = (u1, . . . , ul)T, v = (v1, . . . , vk)T,

u ⊕ v = (ui + vj) ∈ Rl×k

14



Forward Pass

• (α, β) has one redundant degree of freedom, so globally set
βm = 0

• For a fixed β, the optimal α is

α∗(β)i = λ−1 log ai − λ−1 log

 m∑
j=1

eλ(βj −Mij )


• Then the optimization problem becomes

f (β) = −α∗(β)Ta − βTb + λ−1

• We can also show that

∇β̃f = T̃ (β)T1n − b̃, T (β) = eλ[α∗(β)⊕ β −M]

• For a vector v or a matrix A, ṽ or Ã means removing the last
element or column

15



Stability of Solution

Theorem (informal)
Let f ∗ be the minimum value of f (β), β∗ an optimal solution, and
α∗ = α∗(β∗). Then f ∗ > −∞, β∗ is unique, and α∗, β∗ have
computable bounds.

16



L-BFGS Algorithm

• The L-BFGS algorithm (Liu and Nocedal, 1989) is a
well-known quasi-Newton method for smooth optimization
problems

• It only requires evaluating f (β) and ∇β̃f
• We provide theoretical guarantees for the L-BFGS algorithm

on our problem

17



Convergence Analysis

Theorem (informal)
Let β(k) be the k-th iterate of β, and f (k) = f (β(k)), then

• Objective function and iterates converge exponentially fast

f (k) − f ∗ ≤ rk(f (0) − f ∗) := ε(k), ∥β(k) − β∗∥2 ≤ C1ε(k)

• Exponential decay of gradient

∥∇β̃f (β(k))∥2 = ∥T̃ (k)T1n − b̃∥2 ≤ C2ε(k)

• Stability of iterates

0 < T (k)
ij < min{ai , bj +

√
C2ε(k)}, 1 ≤ j ≤ m − 1

18



Backward Pass

• Instead of relying on automatic differentiation
• We develop an analytic expression for ∇MSλ(M, a, b)
• Based on the implicit function theorem

19



Analytic Differentiation

Theorem
For a fixed λ > 0,

∇MSλ(M, a, b) = T ∗
λ + λ(su ⊕ sv −M)⊙ T ∗

λ ,

where

T ∗
λ = eλ[α∗ ⊕ β∗ −M] D = diag(b̃)− T̃ ∗T

λ diag(a−1)T̃ ∗
λ

su = a−1 ⊙ (µr − T̃ ∗s̃v ) s̃v = D−1
[
µ̃c − T̃ ∗T(a−1 ⊙ µr )

]
µr = (M ⊙ T ∗)1m µ̃c = (M̃ ⊙ T̃ ∗)T1n

20



Error Bounds

Theorem
There exists a k0 such that for every k ≥ k0,

∥∇MS(k) −∇MS∥F ≤ CS
√

ε(k) = CS

√
f (0) − f ∗ · rk/2

21



Application and Experiments



Application: Deep Generative Models

• Given a data set X1, . . . , Xn ∼ p∗, find a deep neural network
gθ such that gθ(Z ) ∼ pθ and pθ ≈ p∗, where Z ∼ N(0, Ir )

• This can be viewed as the implicit distribution estimation

• Generate Z1, . . . , Zm ∼ N(0, Ir ), and let Yj = gθ(Zj)
• Cost matrix (Mθ)ij = ∥Xi − gθ(Zj)∥2

• Find θ such that ℓ(θ) = Sλ(Mθ, n−11n, m−11m) is minimized

22



Application: Deep Generative Models

• Given a data set X1, . . . , Xn ∼ p∗, find a deep neural network
gθ such that gθ(Z ) ∼ pθ and pθ ≈ p∗, where Z ∼ N(0, Ir )

• This can be viewed as the implicit distribution estimation

• Generate Z1, . . . , Zm ∼ N(0, Ir ), and let Yj = gθ(Zj)
• Cost matrix (Mθ)ij = ∥Xi − gθ(Zj)∥2

• Find θ such that ℓ(θ) = Sλ(Mθ, n−11n, m−11m) is minimized

22



2D Example

23



MNIST Dataset

• Compare the computing time of different methods
• Unroll: automatic differentiation; Implicit: existing software

package; Analytic: proposed method

(a) Generated images

0 50 100 150 200 250 300 350

Elapsed Time (seconds)

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Te
st

 D
at

a 
W

as
se

rs
te

in
 D

ist
an

ce

MNIST Data
Analytic
Implicit
Unroll

(b) Training process

24



Fasion-MNIST Dataset

(c) Generated images

0 50 100 150 200 250 300 350

Elapsed Time (seconds)

5

6

7

8

9

Te
st

 D
at

a 
W

as
se

rs
te

in
 D

ist
an

ce

Fashion-MNIST Data
Analytic
Implicit
Unroll

(d) Training process

25



CelebA Dataset

(e) Generated images

0 200 400 600 800
Elapsed Time (seconds)

55

56

57

58

59

60

61

62

Lo
ss

 Fu
nc

tio
n 

Va
lu

e

Training Process of WAE using the Sinkhorn Divergence
Analytic
Unroll

(f) Training process

26



Summary

• The Sinkhorn loss is an approximation to the popular
Wasserstein distance

• We advocate the L-BFGS algorithm for forward pass, and
analytic differentiation for the backward pass

• We rigorously prove that L-BFGS is stable and efficient for
Sinkhorn loss

• Numerical results show the effiency of the advocated
algorithms

27



28


	Motivation and Problem Setting
	Our Contribution
	Application and Experiments

	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


