Efficient, Stable, and Analytic Differentiation of the Sinkhorn Loss

Yixuan Qiu

Shanghai University of Finance and Economics

The 9th RUC International Forum on Statistics

Joint work with Haoyun Yin and Xiao Wang

Motivation and Problem Setting

Our Contribution

Application and Experiments

Motivation and Problem Setting

Statistical Divergence

- Given two distributions p and q, define a function D(p, q) such that:
 - $D(p,q) \ge 0$ for all p and q

•
$$D(p,q) = 0 \Leftrightarrow p = q$$

Statistical Divergence

- Given two distributions p and q, define a function D(p, q) such that:
 - $D(p,q) \ge 0$ for all p and q
 - $D(p,q) = 0 \Leftrightarrow p = q$
- Examples:
 - Kullback–Leibler divergence

$$D_{\mathrm{KL}}(p \| q) = \int p(x) \log \left(rac{p(x)}{q(x)}
ight) \mathrm{d}x$$

Squared Hellinger distance

$$H^2(p,q) = 2 \int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 \mathrm{d}x$$

Wasserstein distance

$$W_r(p,q) = \left(\inf_{\gamma \in \Pi(p,q)} \mathbb{E}_{(X,Y) \sim \gamma} ||X - Y||^r\right)^{1/r}$$

• • •

- Given data $X_1, \ldots, X_n \sim p^*$ and a model $p_{ heta}$
- Task 1: Evaluate or estimate the divergence $D(p^*, p_{\theta})$
 - A measure of goodness-of-fit
 - Testing distributional difference
- Task 2: Evaluate or estimate the gradient $\nabla_{\theta} D(p^*, p_{\theta})$
 - This gradient makes p_{θ} learnable
 - Enables us to find a good model p_{θ} that minimizes $D(p^*, p_{\theta})$

- Wasserstein distance is a popular metric to quantify the difference between distributions
- Inspired many breakthroughs in deep learning such as the Wasserstein generative adversarial networks (WGAN)
- However, its computation is notoriously difficult

Wasserstein Distance

Given two discrete distributions X ~ p and Y ~ q

$$\mathbb{P}(X = x_i) = a_i, \quad \mathbb{P}(Y = y_j) = b_i, \quad \sum_{i=1}^n a_i = \sum_{j=1}^m b_j = 1$$

- Define the cost matrix M with $M_{ij} = ||x_i y_j||^r$
- The *r*-Wasserstein distance between *p* and *q* is

$$W_r(p,q) = \left[\min_{P \in \Pi(a,b)} \langle P, M \rangle\right]^{1/r}$$
$$\Pi(a,b) = \{T \in \mathbb{R}^{n \times m}_+ : T\mathbf{1}_m = a, T^{\mathrm{T}}\mathbf{1}_n = b\}$$

Solving P is also called the optimal transport (OT) problem

Sinkhorn Loss as Approximate OT

- Assuming m = n, standard linear programming solvers cost
 \$\mathcal{O}(n^3 \log n)\$
- Cuturi (2013) proposes the entropic-regularized OT

$$\min_{T\in\Pi(a,b)} \langle T, M \rangle - \lambda^{-1} h(T), \quad h(T) = \sum_{i=1}^{n} \sum_{j=1}^{m} T_{ij} (1 - \log T_{ij})$$

- Let T^*_{λ} be the unique global solution, and then the Sinkhorn loss is defined as

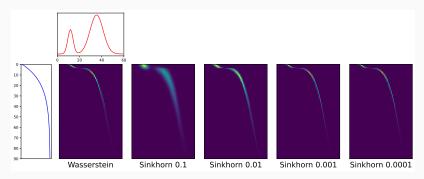
$$S_{\lambda}(M, a, b) = \langle T_{\lambda}^*, M \rangle$$

Sinkhorn Loss as Approximate OT

• Luise et al. (2018) shows that

$$|S_\lambda(M, a, b) - W^r_r(p, q)| \leq C e^{-\lambda}$$

 For smaller and smaller λ⁻¹, S_λ(M, a, b) is closer to the Wasserstein distance



- Corresponding to the two tasks in the problem setting
- Forward pass of Sinkhorn loss
 - Compute S_λ(M, a, b)
 - Existing method: Sinkhorn's algorithm
- Backward pass of Sinkhorn loss
 - Compute $\nabla_M S_\lambda(M, a, b)$
 - Existing method: automatic differentiation

- Cuturi (2013) shows that \mathcal{T}^*_λ can be expressed as

 $T_{\lambda}^* = \operatorname{diag}(u^*) M_e \operatorname{diag}(v^*)$

for some vectors u^* and v^* , where $M_e = \left(e^{-\lambda M_{ij}}\right)$

- Interestingly, u^* and v^* can be solved using the iterations

 $u^{(k+1)} \leftarrow a \odot [M_e v^{(k)}]^{-1}, \quad v^{(k+1)} \leftarrow b \odot [M_e^{\mathrm{T}} u^{(k+1)}]^{-1}$

• Notation: for vectors $u = (u_1, \ldots, u_k)^{\mathrm{T}}$, $v = (v_1, \ldots, v_k)^{\mathrm{T}}$,

$$u^{-1} = (u_1^{-1}, \dots, u_k^{-1})^{\mathrm{T}}, \quad u \odot v = (u_1 v_1, \dots, u_k v_k)^{\mathrm{T}}$$

- Note that the iterations in Sinkhorn's algorithm are all differentiable
- So one can use the automatic differentiation technique to compute ∇_MS_λ(M, a, b)
- This requires "unrolling" the iterations
- Genevay et al. (2018) uses this method to learn generative models with the Sinkhorn loss

Our Contribution

- Numerical instability
 - M_e may underflow when λ is large
 - Making $M_e v^{(k)}$ and $M_e^T u^{(k+1)}$ close to zero
 - $u^{(k+1)}$ and $v^{(k+1)}$ overflow
- Many works to improve
 - Log-domain iterations
 - Stabilized sparse scaling (Schmitzer, 2019)

Issues of Sinkhorn's Algorithm

- May be slow to converge
- Especially for large λ

Dual Problem

 The dual problem of the Sinkhorn optimization is max_{α,β} L(α, β), where α ∈ ℝⁿ, β ∈ ℝ^m,

$$\mathcal{L}(\alpha,\beta) = \alpha^{\mathrm{T}} \mathbf{a} + \beta^{\mathrm{T}} \mathbf{b} - \lambda^{-1} \sum_{i=1}^{n} \sum_{j=1}^{m} e^{-\lambda(M_{ij} - \alpha_i - \beta_j)}$$

- This dual maximization problem is concave and unconstrained
- Once we get the optimal point $(lpha^*, eta^*)$, \mathcal{T}^*_λ is recovered as

$$T^*_{\lambda} = \mathrm{e}_{\lambda}[lpha^* \oplus eta^* - M], \quad \mathrm{e}_{\lambda}[A] = (e^{\lambda A_{ij}})$$

• Notation: for vectors $u = (u_1, \ldots, u_l)^{\mathrm{T}}$, $v = (v_1, \ldots, v_k)^{\mathrm{T}}$,

$$u \oplus v = (u_i + v_j) \in \mathbb{R}^{l \times k}$$

Forward Pass

- (α, β) has one redundant degree of freedom, so globally set $\beta_m = 0$
- For a fixed β , the optimal α is

$$lpha^*(eta)_i = \lambda^{-1} \log a_i - \lambda^{-1} \log \left[\sum_{j=1}^m e^{\lambda(eta_j - M_{ij})}
ight]$$

Then the optimization problem becomes

$$f(\beta) = -\alpha^*(\beta)^{\mathrm{T}} \mathbf{a} - \beta^{\mathrm{T}} \mathbf{b} + \lambda^{-1}$$

We can also show that

$$abla_{ ilde{eta}}f = ilde{T}(eta)^{\mathrm{T}}\mathbf{1}_n - ilde{b}, \quad T(eta) = \mathrm{e}_{\lambda}[lpha^*(eta) \oplus eta - M]$$

 For a vector v or a matrix A, v or A means removing the last element or column **Theorem (informal)** Let f^* be the minimum value of $f(\beta)$, β^* an optimal solution, and $\alpha^* = \alpha^*(\beta^*)$. Then $f^* > -\infty$, β^* is unique, and α^* , β^* have computable bounds.

- The L-BFGS algorithm (Liu and Nocedal, 1989) is a well-known quasi-Newton method for smooth optimization problems
- It only requires evaluating $f(\beta)$ and $abla_{\widetilde{eta}}f$
- We provide theoretical guarantees for the L-BFGS algorithm on our problem

Theorem (informal)

Let $\beta^{(k)}$ be the k-th iterate of β , and $f^{(k)} = f(\beta^{(k)})$, then

• Objective function and iterates converge exponentially fast

$$f^{(k)} - f^* \le r^k (f^{(0)} - f^*) \coloneqq \varepsilon^{(k)}, \quad \|\beta^{(k)} - \beta^*\|^2 \le C_1 \varepsilon^{(k)}$$

Exponential decay of gradient

$$\|\nabla_{\tilde{\beta}}f(\beta^{(k)})\|^2 = \|\tilde{T}^{(k)\mathrm{T}}\mathbf{1}_n - \tilde{b}\|^2 \le C_2 \varepsilon^{(k)}$$

Stability of iterates

$$0 < T_{ij}^{(k)} < \min\{a_i, b_j + \sqrt{C_2 \varepsilon^{(k)}}\}, \quad 1 \le j \le m-1$$

- Instead of relying on automatic differentiation
- We develop an analytic expression for $\nabla_M S_\lambda(M, a, b)$
- Based on the implicit function theorem

Theorem For a fixed $\lambda > 0$,

$$abla_{\mathcal{M}} S_{\lambda}(\mathcal{M}, \mathsf{a}, \mathsf{b}) = T^*_{\lambda} + \lambda(\mathsf{s}_{\mathsf{u}} \oplus \mathsf{s}_{\mathsf{v}} - \mathcal{M}) \odot T^*_{\lambda},$$

where

$$T_{\lambda}^{*} = e_{\lambda}[\alpha^{*} \oplus \beta^{*} - M] \qquad D = \operatorname{diag}(\tilde{b}) - \tilde{T}_{\lambda}^{*\mathrm{T}} \operatorname{diag}(a^{-1}) \tilde{T}_{\lambda}^{*}$$
$$s_{u} = a^{-1} \odot (\mu_{r} - \tilde{T}^{*} \tilde{s}_{v}) \qquad \tilde{s}_{v} = D^{-1} \left[\tilde{\mu}_{c} - \tilde{T}^{*\mathrm{T}} (a^{-1} \odot \mu_{r}) \right]$$
$$\mu_{r} = (M \odot T^{*}) \mathbf{1}_{m} \qquad \tilde{\mu}_{c} = (\tilde{M} \odot \tilde{T}^{*})^{\mathrm{T}} \mathbf{1}_{n}$$

Theorem There exists a k_0 such that for every $k \ge k_0$,

$$\|\nabla_M S^{(k)} - \nabla_M S\|_F \le C_S \sqrt{\varepsilon^{(k)}} = C_S \sqrt{f^{(0)} - f^* \cdot r^{k/2}}$$

Application and Experiments

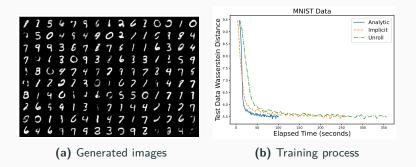
- Given a data set $X_1, \ldots, X_n \sim p^*$, find a deep neural network g_θ such that $g_\theta(Z) \sim p_\theta$ and $p_\theta \approx p^*$, where $Z \sim N(0, I_r)$
- This can be viewed as the implicit distribution estimation

- Given a data set $X_1, \ldots, X_n \sim p^*$, find a deep neural network g_θ such that $g_\theta(Z) \sim p_\theta$ and $p_\theta \approx p^*$, where $Z \sim N(0, I_r)$
- This can be viewed as the implicit distribution estimation
- Generate $Z_1, \ldots, Z_m \sim N(0, I_r)$, and let $Y_j = g_{\theta}(Z_j)$
- Cost matrix $(M_{\theta})_{ij} = ||X_i g_{\theta}(Z_j)||^2$
- Find θ such that $\ell(\theta) = S_{\lambda}(M_{\theta}, n^{-1}\mathbf{1}_n, m^{-1}\mathbf{1}_m)$ is minimized

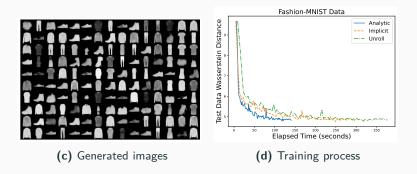
2D Example

MNIST Dataset

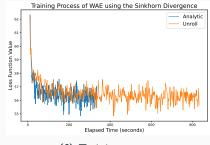
- Compare the computing time of different methods
- Unroll: automatic differentiation; Implicit: existing software package; Analytic: proposed method



Fasion-MNIST Dataset



(e) Generated images



(f) Training process

- The Sinkhorn loss is an approximation to the popular Wasserstein distance
- We advocate the L-BFGS algorithm for forward pass, and analytic differentiation for the backward pass
- We rigorously prove that L-BFGS is stable and efficient for Sinkhorn loss
- Numerical results show the effiency of the advocated algorithms

