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Statistical Divergence

= Given two distributions p and g, define a function D(p, q)
such that:
= D(p,q) >0 forall pand q
*» D(p,q)=0&p=gq



Statistical Divergence

= Given two distributions p and g, define a function D(p, q)
such that:
= D(p,q) >0 forall pand q
*» D(p,q)=0&p=gq
= Examples:
= Kullback-Leibler divergence

Dx(pllq) = /p(X) log (’;8) dx

= Squared Hellinger distance

H(p.a) =2 [ (V/pl) - V/a() dx

= Wasserstein distance

1/r
W, (p,q) = inf E ~~|IX=Y|"
(p,q) (Wel'_ln(P’q) (X,Y) WH | )



Problem Setting

= Given data Xi,..., X, ~ p* and a model py
» Task 1: Evaluate or estimate the divergence D(p*, py)

= A measure of goodness-of-fit
= Testing distributional difference

= Task 2: Evaluate or estimate the gradient VyD(p*, py)

= This gradient makes py learnable
= Enables us to find a good model py that minimizes D(p*, py)



Wasserstein Distance

= Wasserstein distance is a popular metric to quantify the
difference between distributions

= Inspired many breakthroughs in deep learning such as the
Wasserstein generative adversarial networks (WGAN)

= However, its computation is notoriously difficult



Wasserstein Distance

= Given two discrete distributions X ~ p and Y ~ g
n m
PX=x)=a, P(Y=y)=b, Y a=)» b=1
i=1 j=1

= Define the cost matrix M with Mj; = ||x; — y;||"

= The r-Wasserstein distance between p and q is

1/r
W, — in (P,M
(P, q) [peﬁq{?,b)< , >]

N(a,b) = {T €RT*™: Tl =a, T'1, = b}

= Solving P is also called the optimal transport (OT) problem



Sinkhorn Loss as Approximate OT

= Assuming m = n, standard linear programming solvers cost
O(n3log n)

= Cuturi (2013) proposes the entropic-regularized OT

in (T,M)~-\"*h(T), h(T)= T;i(1— log Tj
- oin (M) (T), h(T) ;; (1 — log Tj)

= Let Ty be the unique global solution, and then the Sinkhorn
loss is defined as

Sx(M,a,b) = (Tx, M)



Sinkhorn Loss as Approximate OT

= Luise et al. (2018) shows that
|5/\(M7 a, b) - Wrr(p> q)| < Ce—>\

= For smaller and smaller A\=1, S\(M, a, b) is closer to the
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Forward and Backward Pass

= Corresponding to the two tasks in the problem setting
= Forward pass of Sinkhorn loss

= Compute S\(M, a, b)

= Existing method: Sinkhorn’s algorithm
= Backward pass of Sinkhorn loss

= Compute Vi S\(M, a, b)

= Existing method: automatic differentiation



Sinkhorn’s Algorithm

= Cuturi (2013) shows that T} can be expressed as
Ty = diag(u*)M.diag(v")

for some vectors u* and v*, where M, = (e*/\Mff')

= Interestingly, u* and v* can be solved using the iterations
uD) a0 MW7 vk o p o [MT (kD)L

= Notation: for vectors u = (u1,...,ux)%, v=(v1,..., )T

1

uilz(ul_law-auk_l)T, u@v:(ulvl,...,ukvk)T
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Automatic Differentiation

= Note that the iterations in Sinkhorn's algorithm are all
differentiable

= So one can use the automatic differentiation technique to
compute V1 S\(M, a, b)
= This requires “unrolling” the iterations

= Genevay et al. (2018) uses this method to learn generative
models with the Sinkhorn loss
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Our Contribution




Issues of Sinkhorn’s Algorithm

= Numerical instability
= M, may underflow when X is large
= Making M.v(®) and MTu(k+Y) close to zero
= (k) and vkt overflow

= Many works to improve

= Log-domain iterations
= Stabilized sparse scaling (Schmitzer, 2019)

12



Issues of Sinkhorn’s Algorithm

= May be slow to converge

= Especially for large A

B o o
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Dual Problem

= The dual problem of the Sinkhorn optimization is
maxq 3 L(a, B), where o € R", € R™,

n m
L(e,B)=aTa+pTb— A3 e M My=ei=f)
i=1j=1
= This dual maximization problem is concave and unconstrained
= Once we get the optimal point (a*, 3*), Ty is recovered as
Ty =ex[a® @ B* — M|, ey[A] = (M)
= Notation: for vectors u = (u1,...,u)Y, v=(v1,...,v)%,

u®v=(u+v) e Rk
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(cr, B) has one redundant degree of freedom, so globally set
/Bm =0
For a fixed 3, the optimal « is

m
a*(B)i = A llogai — A tlog [Z e)‘('gf_M"f)]
j=1
Then the optimization problem becomes
f(8)=—a(B)'a— b+ A"
We can also show that
Vsf = T(8)'1,—b, T(B)=era*(8)&5— M)

For a vector v or a matrix A, ¥ or A means removing the last

element or column

ii5)



Stability of Solution

Theorem (informal)
Let f* be the minimum value of f(/3), B* an optimal solution, and

o = o*(B*). Then f* > —oo, B* is unique, and o*, * have
computable bounds.
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L-BFGS Algorithm

= The L-BFGS algorithm (Liu and Nocedal, 1989) is a
well-known quasi-Newton method for smooth optimization

problems
= It only requires evaluating f(3) and Vf
= We provide theoretical guarantees for the L-BFGS algorithm

on our problem
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Convergence Analysis

Theorem (informal)
Let 5%) be the k-th iterate of 3, and f(K) = f((K)), then

= Objective function and iterates converge exponentially fast
FA) _f* < rk(f(O) — ") = ek ”5(k) — B P < Ce(®
= Exponential decay of gradient
IV (BUN)I? = I THTL, — b|I* < Ge™

= Stability of iterates
0< T,-J(-k) < min{a;, b+ 1/ GeW}, 1<j<m-1

18



Backward Pass

= Instead of relying on automatic differentiation
= We develop an analytic expression for VySx(M, a, b)

= Based on the implicit function theorem

19



Analytic Differentiation

Theorem
For a fixed A > 0,

VuSi(M,a,b) = T + A(su ® sy — M) © T3,
where

T = ex[a* @ B — M] D) = diag(E) = Tdeiag(a_l):F,{‘
su=a o (pr — 7_*gv) By =0 [ﬂc - 7—*T(a_l © l‘r)]
pr= (Mo TH1, fie = (Mo 7)1,
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Theorem
There exists a kg such that for every k > ko,

IVmS® — ViS|r < CsVelk) = Cgy/FO) — Fx . (k)2
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Application and Experiments




Application: Deep Generative Models

= Given a data set Xi,..., X, ~ p*, find a deep neural network
gp such that gy(Z) ~ pg and py ~ p*, where Z ~ N(0, I,)

= This can be viewed as the implicit distribution estimation

22



Application: Deep Generative Models

= Given a data set Xi,..., X, ~ p*, find a deep neural network
gp such that gy(Z) ~ pg and py ~ p*, where Z ~ N(0, I,)

= This can be viewed as the implicit distribution estimation

= Generate Z1,...,Zn ~ N(0,/;), and let Y; = go(Z;)
= Cost matrix (MQ)U = HX, = gg(Zj)HZ
= Find 6 such that £(0) = Sy(My,n"11,, m~11,,) is minimized
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2D Example
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MNIST Dataset

= Compare the computing time of different methods

= Unroll: automatic differentiation; Implicit: existing software
package; Analytic: proposed method

MNIST Data

—— Analytic
\ Implicit
—-— Unroll

mN N O N

6
4
I 4
3
7
a
3

Mg,

Test Data Wasserstein Distance

S NSNS rm S

5773
09959
q93¢7
({3019
OC77¢9
2273
4 O\ 4
54132
1164
6119

LD ~L UV o w0
NS LONN W~~~
UL SN=mwNeNnD
DV ~NT L ~W=O
LRV SNNIVOY~
ARSI BEVIER BRENRN I N O e )

ON=-UQ2e NPy

7
S
9
4
8
a7
/
6
0
L’

SO NG

] B 300 50

160 ) 2% EN
Elapsed Time (seconds)

(a) Generated images (b) Training process

24



)
Q
(22}
[}
-
[}
(@]
T
g
2
s
c
2
[2]
v
L

Fashion-MNIST Data

Analytic
Implicit
—:— Unroll

'
:
\
)
>
¢
{
¥
¥
¥
s
¥

Sa=1=Sa

|@==Na| 9

W o w0 o w0 3o
Elapsed Time (seconds)

50

(d) Training process

(c) Generated images

25



CelebA Dataset

Training Process of WAE using the Sinkhorn Divergence
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= The Sinkhorn loss is an approximation to the popular
Wasserstein distance

= We advocate the L-BFGS algorithm for forward pass, and
analytic differentiation for the backward pass

= We rigorously prove that L-BFGS is stable and efficient for
Sinkhorn loss

= Numerical results show the effiency of the advocated
algorithms
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