Source

sks-keyserver-with-async / prefixTree.ml

Full commit
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
(***********************************************************************)
(* prefixTree.ml                                                       *)
(*                                                                     *)
(* Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, *)
(*               2011, 2012, 2013  Yaron Minsky and Contributors       *)
(*                                                                     *)
(* This file is part of SKS.  SKS is free software; you can            *)
(* redistribute it and/or modify it under the terms of the GNU General *)
(* Public License as published by the Free Software Foundation; either *)
(* version 2 of the License, or (at your option) any later version.    *)
(*                                                                     *)
(* This program is distributed in the hope that it will be useful, but *)
(* WITHOUT ANY WARRANTY; without even the implied warranty of          *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU   *)
(* General Public License for more details.                            *)
(*                                                                     *)
(* You should have received a copy of the GNU General Public License   *)
(* along with this program; if not, write to the Free Software         *)
(* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *)
(* USA or see <http://www.gnu.org/licenses/>.                          *)
(***********************************************************************)

open StdLabels
open MoreLabels
open Printf
open Common
module Unix=UnixLabels
(*module ZZp = RMisc.ZZp *)
module Set = PSet.Set
module ZSet = ZZp.Set

exception Bug of string

(** Invariants:
   - Parent of dirty node is dirty.
   - A dirty non-leaf node has at least one dirty child
   - dirty nodes are reachable from the root
   - All nodes not InMem are mirrored on disk.
   - All nodes on disk are in real tree.
*)

(** TODO:
   - Make sure that newly created nodes (in particular, in a split)
     start out Dirty
   - Nodes that are destroyed should have their backing store on disk
     destroyed as well.  In particular, in a join.
*)


type key = Bitstring.t

module WHash =
  Weak.Make(struct
              type t = key
              let equal = (=)
              and hash = Hashtbl.hash
            end)

type writestatus = Clean | Dirty
type 'a disk = OnDisk of key | InMem of 'a

type children = | Leaf of string Set.t
                | Children of node disk array

and node = { svalues: ZZp.mut_array;
             key: key;
             mutable num_elements: int;
             mutable children: children;
             mutable wstatus: writestatus;
           }


type 'txn db = { load : string -> string;
                 save : 'txn option -> key:string -> data:string -> unit;
                 delete : 'txn option -> string -> unit;
                 create_txn : unit -> 'txn option;
                 commit_txn : 'txn option -> unit;
                 abort_txn : 'txn option -> unit;
                 mutable maxnodes : int;
                 mutable inmem_count : int;
               }

type 'txn tree = { root: node;
                   num_samples: int;
                   split_thresh: int; (* threshold for splitting node *)
                   join_thresh: int;   (* threshold for deleting node.
                                          Should be less than split_thresh *)
                   bitquantum: int;    (* amount by which depths differ
                                          from each other *)
                   points: ZZp.zz array;
                   db: 'txn db option;
                   mutable synctime: float;
                 }

type dheader = { d_num_samples: int;
                 d_split_thresh: int;
                 d_join_thresh: int;
                 d_bitquantum: int;
                 d_points: ZZp.zz array;
               }

(******************************************************************)

let op_unwrap x = match x with
    Some y -> y
  | None -> failwith "Attempt to unwrap None"

let op_apply ~f x = match x with
    None -> None
  | Some x -> Some (f x)

let op_map ~f list = List.map ~f:(op_apply ~f) list

(******************************************************************)
(******************************************************************)
(******************************************************************)

(** Returns all extensions of bs to length ~len,
 * starting at bit ~bit
 *)
let rec child_keys_rec bs ~bit ~len =
  if bit >= len
  then
    Set.add (Bitstring.copy bs) Set.empty
  else (
    Bitstring.set bs bit;
    let keys_1 = child_keys_rec bs ~bit:(bit+1) ~len in
    Bitstring.unset bs bit;
    let keys_2 = child_keys_rec bs ~bit:(bit+1) ~len in
    Set.union keys_1 keys_2
  )

(** Return 2^t.bitquantum bitstrings which consist of all possible
  * t.bitquantum-bit extensions of the key.
  *)
let child_keys_raw bitquantum key =
  let len = Bitstring.num_bits key in
  let newlen = len + bitquantum in
  let bs = Bitstring.copy_len key newlen in
  let keys = child_keys_rec bs ~bit:len ~len:newlen in
  Set.elements keys

let child_keys t key = child_keys_raw t.bitquantum key

(******************************************************************)
(******************************************************************)
(******************************************************************)

let marshal_to_string ~f x =
  let bufc = Channel.new_buffer_outc 1000 in
  f (bufc#upcast) x;
  bufc#contents

let unmarshal_of_string ~f s =
  let strc = new Channel.string_in_channel s 0 in
  f (strc#upcast)

(******************************************************************)
(******************************************************************)
(******************************************************************)

let samesize set =
  let sizes = Set.fold ~init:Set.empty set
                ~f:(fun string set -> Set.add (String.length string) set)
  in
  let nsizes = Set.cardinal sizes in
  nsizes = 1 || nsizes = 0

let marshal_node (cout:Channel.out_channel_obj) n =
  cout#write_int n.num_elements;
  cout#write_int (Bitstring.num_bits n.key);
  cout#write_string (Bitstring.to_bytes n.key);
  Array.iter ~f:(fun zz -> cout#write_string (ZZp.to_bytes zz))
    (ZZp.mut_array_to_array n.svalues);
  (match n.children with
       Leaf set ->
         cout#write_byte 1;
         assert (samesize set);
         cout#write_int (Set.cardinal set);
         Set.iter ~f:(fun s -> cout#write_string s) set
     | Children _ ->
         cout#write_byte 0)

let unmarshal_node ~bitquantum ~num_samples (cin:Channel.in_channel_obj) =
  let zzp_len = ZZp.num_bytes () in
  let num_elements = cin#read_int in
  let keybits = cin#read_int in
  let keybytes = Bitstring.bytelength keybits in
  let keydata = cin#read_string keybytes in
  let key = Bitstring.of_bytes keydata keybits in
  let svalues = Array.init num_samples
                  ~f:(fun _ -> ZZp.of_bytes (cin#read_string zzp_len)) in
  let isleaf = cin#read_byte = 1 in
  let children =
    if isleaf then
      let size = cin#read_int in
      let a = Array.init size ~f:( fun i -> cin#read_string zzp_len ) in
      Leaf (Set.of_list (Array.to_list a))
    else
      let ckeys = child_keys_raw bitquantum key in
      Children (Array.map ~f:(fun key -> OnDisk key)
                  (Array.of_list ckeys))
  in
  { svalues = ZZp.mut_array_of_array svalues;
    num_elements = num_elements;
    children = children;
    wstatus = Clean;
    key = key;
  }

let node_to_string n = marshal_to_string ~f:marshal_node n
let node_of_string_raw ~bitquantum ~num_samples s =
  unmarshal_of_string ~f:(unmarshal_node ~bitquantum ~num_samples) s
let node_of_string tree s =
  node_of_string_raw ~bitquantum:tree.bitquantum
    ~num_samples:tree.num_samples s

(******************************************************************)

let marshal_header cout tree =
  ignore (cout :> Channel.out_channel_obj);
  cout#write_int tree.num_samples;
  cout#write_int tree.split_thresh;
  cout#write_int tree.join_thresh;
  cout#write_byte tree.bitquantum;
  Array.iter ~f:(fun zz -> cout#write_string (ZZp.to_bytes zz))
    tree.points

let unmarshal_dheader cin =
  ignore (cin :> Channel.in_channel_obj);
  let zzp_len = ZZp.num_bytes () in
  let num_samples = cin#read_int in
  let split_thresh = cin#read_int in
  let join_thresh = cin#read_int in
  let bitquantum = cin#read_byte in
  let points = Array.init num_samples
                 ~f:(fun zz -> ZZp.of_bytes (cin#read_string zzp_len))
  in
  { d_num_samples = num_samples;
    d_split_thresh = split_thresh;
    d_join_thresh = join_thresh;
    d_bitquantum = bitquantum;
    d_points = points;
  }

(************)

let header_to_string tree =
  marshal_to_string ~f:marshal_header tree

let dheader_of_string s =
  unmarshal_of_string ~f:unmarshal_dheader s

let dheader_to_header db root dh synctime =
  { num_samples = dh.d_num_samples;
    split_thresh = dh.d_split_thresh;
    join_thresh = dh.d_join_thresh;
    bitquantum = dh.d_bitquantum;
    points = dh.d_points;
    db = db;
    root = root;
    synctime = synctime;
  }

(******************************************************************)

let marshal_synctime cout time = cout#write_float time
let unmarshal_synctime cin = cin#read_float

let synctime_to_string time =
  marshal_to_string ~f:marshal_synctime time

let synctime_of_string time =
  unmarshal_of_string ~f:unmarshal_synctime time


(******************************************************************)

(** converts bitstring to dbkey by writing the bitlength of the key followed
  by the bytes of the key itself.

  Note that a more efficient coding is possible, since really you only need 3
  bits, to tell you how much of the last byte is used.
*)
let dbkey_of_key key =
  let bufc = Channel.new_buffer_outc 8 in
  let length = Bitstring.num_bits key in
  let data = Bitstring.to_bytes key in
  bufc#write_int length;
  bufc#write_string data;
  bufc#contents

(** dbkey for storing header *)
let int_to_bstring i =
  let bufc = Channel.new_buffer_outc 1 in
  bufc#write_int i;
  bufc#contents

let root_dbkey = dbkey_of_key (Bitstring.create 0)
let header_dbkey = int_to_bstring (-1)
let synctime_dbkey = int_to_bstring (-2)

(******************************************************************)

(** returns the on-disk version of the node corresponding to dbkey.
  No changes are made to the in-memory tree *)
let load_node tree dbkey =
  let db = op_unwrap tree.db in
  let nodestr = db.load dbkey in
  node_of_string tree nodestr

(** Returns the node corresponding to the [cindex]'th child from the
  [children] array.  If an OnDisk node has been loaded into memory, [children]
  is updated accordingly.
*)
let load_child t children cindex =
  match children.(cindex) with
    | OnDisk key ->
        let db = op_unwrap t.db in
        let cnode = load_node t (dbkey_of_key key) in
        children.(cindex) <- InMem cnode;
        db.inmem_count <- db.inmem_count + 1;
        cnode
    | InMem cnode -> cnode

(** side-effect-free version of load_child *)
let load_child_sef t children cindex =
  match children.(cindex) with
    | OnDisk key -> load_node t (dbkey_of_key key)
    | InMem cnode -> cnode

(******************************************************************)

let save_node t txn node =
  match t.db with
      None -> ()
    | Some db ->
        let dbkey = dbkey_of_key node.key in
        db.save txn ~key:dbkey  ~data:(node_to_string node)

let save_synctime tree txn =
  match tree.db with
      None -> ()
    | Some db ->
        db.save txn ~key:synctime_dbkey
        ~data:(synctime_to_string tree.synctime)


(******************************************************************)
(******************************************************************)
(******************************************************************)

let rec clean_subtree tree txn node = match node.wstatus with
  | Dirty ->
      ( match node.children with
            Leaf _ -> ()
          | Children children ->
              Array.iter children
              ~f:(function
                      OnDisk key -> ()
                    | InMem cnode -> clean_subtree tree txn cnode)
      );
      save_node tree txn node;
      node.wstatus <- Clean;

  | Clean -> ()

let clean txn tree =
  match tree.db with
      None -> ()
    | Some _ ->
        clean_subtree tree txn tree.root;
        save_synctime tree txn


(*************************************************************)

let rec delete_subtree_rec txn tree disknode =
  let node = match disknode with
      InMem node -> node
    | OnDisk key -> load_node tree (dbkey_of_key key)
  in
  let db = op_unwrap tree.db in
  db.delete txn (dbkey_of_key node.key);
  match node.children with
      Leaf _ -> ()
    | Children children ->
        Array.iter ~f:(delete_subtree_rec txn tree) children

let delete_subtree txn tree node =
  perror "Fix this!";
  delete_subtree_rec txn tree (InMem node)

(******************************************************************)
(* Full Tree Summaries  ******************************************)
(******************************************************************)

let rec summarize_tree_rec ~lagg ~cagg tree nodedisk =
  let node = match nodedisk with
      InMem node -> node
    | OnDisk key -> load_node tree (dbkey_of_key key)
  in
  match node.children with
    | Leaf elements ->
        lagg elements
    | Children children ->
        let values =
          Array.map ~f:(summarize_tree_rec ~lagg ~cagg tree) children
        in
        cagg values

let summarize_tree ~lagg ~cagg tree =
  summarize_tree_rec ~lagg ~cagg tree (InMem tree.root)

(******************************************************************)

let depth tree =
  summarize_tree
    ~lagg:(fun _ -> 1)
    ~cagg:(fun depths -> 1 + MArray.max depths)
    tree

let count_nodes tree =
  summarize_tree
    ~lagg:(fun _ -> 1)
    ~cagg:(fun counts -> 1 + Array.fold_left ~f:(+) ~init:0 counts)
    tree

let (<+>) (x1,y1) (x2,y2) = (x1 + x2, y1 + y2)

(* returns (# internal nodes, # leaf nodes) below & including current node *)
let count_node_types tree =
  summarize_tree
    ~lagg:(fun _ -> (0,1))
    ~cagg:(fun counts ->
             (1,0) <+>
             Array.fold_left ~f:(<+>) ~init:(0,0) counts
          )
    tree

let get_elements tree node =
  summarize_tree_rec
    ~lagg:(fun x -> x)
    ~cagg:(fun sets -> Array.fold_left ~f:Set.union ~init:Set.empty sets)
    tree (InMem node)

let get_zzp_elements tree node =
  let selem = get_elements tree node in
  Set.fold selem ~init:ZSet.empty
    ~f:(fun x set -> ZSet.add (ZZp.of_bytes x) set)

let iter ~f tree =
  summarize_tree
    ~lagg:(Set.iter ~f)
    ~cagg:(fun _ -> ())
    tree

(******************************************************************)

(** returns the number of inmem nodes below and including
  the present node *)
let rec count_inmem node = match node.children with
    Leaf _ -> 1
  | Children children ->
      let counts = Array.map ~f:(function
                                     OnDisk x -> 0
                                   | InMem cnode -> count_inmem cnode)
                     children
      in
      1 + Array.fold_left ~f:(+) ~init:0 counts

(** returns the number of inmen nodes in the tree,
  not counting the root. *)
let count_inmem_tree tree = count_inmem tree.root - 1

let get_inmem_count tree =
  match tree.db with
      None -> raise Not_found
    | Some db -> db.inmem_count

let set_inmem_count tree newcount =
  match tree.db with
      None -> raise Not_found
    | Some db -> db.inmem_count <- newcount



(*************************************************************)
(*  Code for limiting number of InMem nodes  ****************)
(*************************************************************)

let rec list_extract ~f list = match list with
    [] -> []
  | hd::tl -> match f hd with
        None -> list_extract ~f tl
      | Some x -> x::(list_extract ~f tl)

let rec list_prefix k list = match k with
    0 -> []
  | _ -> match list with
        [] -> failwith "Requested prefix longer than list"
      | hd::tl -> hd::(list_prefix (k-1) tl)

let list_prefix_suffix k list =
  let rec loop k list prefix =
    match k with
        0 -> (List.rev prefix,list)
      | _ -> match list with
            [] -> failwith "Requested prefix longer than list"
          | hd::tl ->
              loop (k-1) tl (hd::prefix)
  in
  loop k list []


let inmem_children node = match node.children with
    Leaf _ -> []
  | Children children ->
      list_extract ~f:(function
                           InMem x -> Some x
                         | OnDisk _ -> None
                      )
      (Array.to_list children)

let rec get_frontier tree ~frontier ~newfrontier ~n ~count =
  if count > n then failwith "get_frontier called with count>n"
  else
    match frontier, newfrontier with
      | [],[] ->
          raise (Bug "frontier and newfrontier both empty")
      | [],newfrontier ->
          get_frontier tree ~frontier:newfrontier ~newfrontier:[]
          ~n ~count
      | hd::tl,newfrontier ->
          let children = inmem_children hd in
          let num_kids = List.length children in
          if num_kids + count >= n then
            (List.rev_append frontier newfrontier, count)
          else
            let newfrontier =
              List.rev_append children newfrontier
            in
            let frontier = tl in
            get_frontier tree ~frontier ~newfrontier ~n ~count:(count + num_kids)


(*
let inmem_children node = match node.children with
    Leaf _ -> []
  | Children children ->
      list_extract ~f:(function
                           (i,InMem x) -> Some (i,x)
                         | (i,OnDisk _) -> None )
      (Array.to_list (Array.mapi ~f:(fun i x -> (i,x)) children))

let rec get_frontier tree ~frontier ~newfrontier ~n ~count =
  if count > n then raise (Bug (sprintf "count(%d) exceeded n(%d)" count n))
  else if count = n then (frontier,None)
  else
    match frontier, newfrontier with
        [],[] ->
          raise (Bug "frontier and newfrontier should never both be empty")
      | [],newfrontier ->
          get_frontier tree ~frontier:newfrontier ~newfrontier:[]
          ~n ~count
      | hd::tl, newfrontier ->
          let children = inmem_children hd in
          if List.length children + count <= n then
            let children = List.map ~f:snd children in
            get_frontier tree
              ~frontier:tl
              ~newfrontier:(List.rev_append children newfrontier)
              ~n ~count:(count + List.length children)
          else
            let needed = List.length children + count - n in
            let (needed_children,unneeded_children) =
              list_prefix_suffix needed children in
            (tl @ newfrontier,
             Some (hd,
                   List.map ~f:(fun (i,x) -> x) needed_children,
                   List.map ~f:(fun (i,x) -> i) unneeded_children)
            )
*)


(** marks all the children of a node as being OnDisk *)
let disconnect_children node =
  if node.wstatus = Dirty then
    failwith "Disconnect children called on Dirty node";
  match node.children with
    | Leaf _ -> ()
    | Children children ->
        for i = 0 to Array.length children - 1 do
          match children.(i) with
            | OnDisk key -> ()
            | InMem node -> children.(i) <- OnDisk node.key
        done

(** Reduce number of InMem nodes to no more than n *)
let shrink_tree tree txn n =
  clean txn tree;
  let (frontier,count) = get_frontier tree
                           ~frontier:[ tree.root ]
                           ~newfrontier:[]
                           ~n ~count:0 (* we don't count the root since it's
                                          always in memory *)
  in
  List.iter frontier ~f:disconnect_children;
  let real_count = count_inmem_tree tree  in
  if count <> real_count then
    failwith (sprintf "%s.  expected %d, found %d"
                "tree shrinkage failed to produce tree of expected size"
                count real_count) ;
  set_inmem_count tree count

let shrink_tree_if_necessary tree txn =
  match tree.db with
      None -> ()
    | Some db ->
        if db.inmem_count > db.maxnodes
        then shrink_tree tree txn (db.maxnodes / 2)


(******************************************************************)
(******************************************************************)

let width = 8
let rmask i = 0xFF lsl (width - i)
let lmask i = 0xFF lsr (width - i)

let string_index t depth string =
  let q = t.bitquantum in
  let lowbit = depth * q in
  let highbit = lowbit + q - 1
  in
  let lowbyte = lowbit / 8
  and lowbit = lowbit mod 8
  and highbyte = highbit / 8
  and highbit = highbit mod 8
  in
  if lowbyte = highbyte then
    let byte = int_of_char string.[lowbyte] in
    let key = (byte lsr (7 - highbit)) land
              (lmask (highbit - lowbit + 1)) in
    key
  else  (* extract from two adjacent bytes *)
    let byte1 = int_of_char string.[lowbyte] in
    let byte2 = int_of_char string.[highbyte] in
    let key1 = (byte1 land (lmask (8 - lowbit))) lsl (highbit + 1)  in
    let key2 = (byte2 land (rmask (highbit + 1))) lsr (7 - highbit) in
    let key = key1 lor key2 in
    key

(******************************************************************)

let create_svalues points =
  ZZp.svalues (Array.length points)

let incr_inmem_count tree =
  match tree.db with
      None -> ()
    | Some db ->
        db.inmem_count <- db.inmem_count + 1

let decr_inmem_count tree =
  match tree.db with
      None -> ()
    | Some db ->
        db.inmem_count <- db.inmem_count - 1

let create_node_basic key points =
  { svalues = create_svalues points;
    num_elements = 0;
    children = Leaf Set.empty;
    key = key;
    wstatus = Dirty;
  }

let create_node tree key =
  let points = tree.points in
  incr_inmem_count tree;
  create_node_basic key points

let add_to_node t node zz zzs marray =
  ZZp.mult_array ~svalues:node.svalues marray;
  node.num_elements <- node.num_elements + 1;
  node.wstatus <- Dirty;
  match node.children with
    | Leaf elements ->
        node.children <-
        if Set.mem zzs elements
        then failwith "add_to_node: attempt to reinsert element into prefix tree"
        else Leaf (Set.add zzs elements)
    | _ -> ()

let remove_from_node t node zz zzs marray =
  ZZp.mult_array ~svalues:node.svalues marray;
  node.num_elements <- node.num_elements - 1;
  node.wstatus <- Dirty;
  match node.children with
    | Leaf elements ->
        if not (Set.mem zzs elements)
        then failwith "remove_from_node: attempt to delete non-existant element from prefix tree"
        else node.children <- Leaf (Set.remove zzs elements)
    | _ -> ()


(******************************************************************)

let split_at_depth t zz zzs node depth =
  match node.children with
      Children _ -> raise (Bug "split of non-leaf node.");
    | Leaf elements ->
        let ckeys = Array.of_list (child_keys t node.key) in
        let children =
          Array.map ~f:(fun key -> InMem (create_node t key)) ckeys
        in
        node.children <- Children children;
        Set.iter elements
          ~f:(fun (zzs) ->
                let zz = ZZp.of_bytes zzs in
                let idx = string_index t depth zzs in
                let marray = ZZp.add_el_array ~points:t.points zz in
                let cnode = load_child t children idx in
                add_to_node t cnode zz zzs marray
             )

(******************************************************************)

let pad string bytes =
  let len = String.length string in
  if bytes > len then
    let nstr = String.create bytes in
    String.fill nstr ~pos:len ~len:(bytes - len) '\000';
    String.blit ~src:string ~dst:nstr ~src_pos:0 ~dst_pos:0 ~len;
    nstr
  else
    string



(******************************************************************)
(* Interface functions *******************************************)
(******************************************************************)

let create_empty_header ~points ~bitquantum ~num_samples ~thresh ~dbopt =
  { root = create_node_basic (Bitstring.create 0) points;
    num_samples = num_samples;
    bitquantum = bitquantum;
    split_thresh = thresh;
    join_thresh = thresh / 2;
    points = points;
    db = dbopt;
    synctime = 0.0;
  }

let create ?db:dbopt ~txn ~num_samples ~bitquantum ~thresh () =
  let points = ZZp.points num_samples in
  let dbopt =
    match dbopt with
        None -> None
      | Some (load,save,delete,(create,commit,abort),maxnodes) ->
          Some { load = load;
                 save = save;
                 delete = delete;
                 create_txn = create;
                 commit_txn = commit;
                 abort_txn = abort;
                 maxnodes = maxnodes;
                 inmem_count = 0;
               }
  in
  match dbopt with
      Some db ->
        begin
           try
             let header_string = db.load header_dbkey in
             let dheader = dheader_of_string header_string in

             let root_string = db.load root_dbkey in
             let root = node_of_string_raw ~bitquantum:dheader.d_bitquantum
                 ~num_samples:dheader.d_num_samples root_string in

            let synctime_string = db.load synctime_dbkey in
            let synctime = synctime_of_string synctime_string in

             dheader_to_header dbopt root dheader synctime
           with
               Not_found ->
                (* no header found on disk.  Start from scratch *)
                let tree = create_empty_header ~points ~bitquantum
                             ~num_samples ~thresh ~dbopt in
                (* header and root must now be written to disk *)
                let header_string = header_to_string tree in
                let root_string = node_to_string tree.root in
                let synctime_string = synctime_to_string tree.synctime in
                db.save txn ~key:header_dbkey ~data:header_string;
                db.save txn ~key:root_dbkey ~data:root_string;
                db.save txn ~key:synctime_dbkey ~data:synctime_string;
                tree
        end
    | None ->
        (* No way of accessing the disk, so create a blank tree *)
        create_empty_header ~points ~bitquantum ~num_samples ~thresh ~dbopt

(******************************************************************)

let rec insert_at_depth t zz zzs node marray depth =
  add_to_node t node zz zzs marray;
  (match node.children with
     | Leaf elements ->
         if node.num_elements > t.split_thresh
         then split_at_depth t zz zzs node depth
     | Children children -> (* insertion must continue at next depth *)
         let cindex = string_index t depth zzs in
         let cnode = load_child t children cindex in
         insert_at_depth t zz zzs cnode marray (depth + 1)
  )

let insert_both t txn zz zzs =
  let zzs = pad zzs (ZZp.num_bytes ()) in
  if String.length zzs <> ZZp.num_bytes ()
  then raise (Invalid_argument
                (sprintf "%s.  %d found, %d expected"
                   "PrefixTree.insert_both: zzs has wrong length"
                   (String.length zzs) (ZZp.num_bytes ())
                ));
  let marray = ZZp.add_el_array ~points:t.points zz in
  let root = t.root in
  insert_at_depth t zz zzs root marray 0;
  shrink_tree_if_necessary t txn

let insert t txn zz =
  let zzs = ZZp.to_bytes zz in
  insert_both t txn zz zzs

let insert_str t txn zzs =
  let zz = ZZp.of_bytes zzs in
  insert_both t txn zz zzs

(******************************************************************)

let rec get_ondisk_subkeys tree db key =
  try
    ignore (db.load (dbkey_of_key key));
    let ckeys = child_keys tree key in
    let sets = List.map ~f:(get_ondisk_subkeys tree db) ckeys in
    Set.add key (List.fold_left ~f:Set.union sets ~init:Set.empty)
  with
      Not_found -> (* has no subkeys, so emptyset *)
        Set.empty

let rec delete_at_depth t txn zz zzs node marray depth =
  remove_from_node t node zz zzs marray;
  match node.children with
    | Children children ->
        if node.num_elements <=  t.join_thresh then (
          let elements = Set.remove zzs (get_elements t node) in
          node.children <- Leaf elements;
          match t.db with
              None -> ()
            | Some db ->
                let subkeys = get_ondisk_subkeys t db node.key in
                let subkeys = Set.remove node.key subkeys in
                let inmem_delta = count_inmem node - 1 in
                Set.iter ~f:(fun key -> db.delete txn (dbkey_of_key key))
                  subkeys;
                db.inmem_count <- db.inmem_count - inmem_delta
        ) else (
          let cindex = string_index t depth zzs in
          let cnode = load_child t children cindex in
          delete_at_depth t txn zz zzs cnode marray (depth + 1)
        )
    | _  -> ()

let delete_both t txn zz zzs =
  let zzs = pad zzs (ZZp.num_bytes ()) in
  if String.length zzs <> ZZp.num_bytes ()
  then raise (Invalid_argument
                "PrefixTree.delete_both: zzs has wrong length");
  let marray = ZZp.del_el_array ~points:t.points zz in
  let root = t.root in
  delete_at_depth t txn zz zzs root marray 0


let delete t txn zz =
  let zzs = ZZp.to_bytes zz in
  delete_both t txn zz zzs

let delete_str t txn zzs =
  let zz = ZZp.of_bytes zzs in
  delete_both t txn zz zzs

(******************************************************************)
(******************************************************************)
(******************************************************************)

let set_maxnodes tree txn n =
  match tree.db with
      None -> ()
    | Some db ->
        db.maxnodes <- n;
        shrink_tree_if_necessary tree txn

let get_maxnodes tree =
  match tree.db with
      None -> raise (Invalid_argument
                       "Attempt to invoke DB operation without DB")
    | Some db -> db.maxnodes

(******************************************************************)

let rec get_node_rec ~sef t node zzs ~depth ~goal_depth =
  if depth < goal_depth
  then (
    match node.children with
        Children children ->
          let cindex = string_index t depth zzs in
          let cnode =
            (if sef then load_child_sef else load_child)
                        t children cindex in
          get_node_rec ~sef t cnode zzs ~depth:(depth+1) ~goal_depth
      | Leaf _ ->
          raise Not_found
  )
  else if depth = goal_depth then node
  else failwith "Goal depth exceeded"

let get_node_str ?(sef=false) t zzs depth =
  let rval = get_node_rec ~sef t t.root zzs ~depth:0 ~goal_depth:depth in
  (** shrink the tree if required, creating transaction as needed *)
  begin
    match t.db with
        None -> ()
      | Some db ->
          let txn = db.create_txn () in
          try
            shrink_tree_if_necessary t txn;
            db.commit_txn txn
          with
              e -> db.abort_txn txn; raise e
  end;
  rval


let get_node ?(sef=false) t zz depth =
  let zzs = ZZp.to_bytes zz in
  get_node_str ~sef t zzs depth

let get_node_key ?(sef=false) t key =
  if (Bitstring.num_bits key) mod t.bitquantum <> 0
  then raise (Invalid_argument "Prefix given of wrong length")
  else
    let depth = (Bitstring.num_bits key) / t.bitquantum in
    get_node_str ~sef t (Bitstring.to_bytes key) depth

(******************************************************************)

let root t =  t.root

let children node = match node.children with
  | Leaf _ -> None
  | Children children -> Some children

let svalues node = node.svalues
let size node = node.num_elements
let is_leaf node =
  match node.children with Leaf _ -> true | _ -> false

let points tree = tree.points

let elements tree node =
  let pset = get_elements tree node in
  Set.fold ~f:(fun zzs set -> ZSet.add (ZZp.of_bytes zzs) set)
    ~init:ZSet.empty pset


(******************************************************************)

let node_size tree nodedisk =
  let node = match nodedisk with
      InMem node -> node
    | OnDisk key -> load_node tree (dbkey_of_key key)
  in
  node.num_elements

let nonempty_children tree children =
  let sizes = Array.map ~f:(node_size tree) children in
  let nonempty = Array.mapi ~f:(fun i s -> (i,s > 0) ) sizes in
  Array.fold_left ~f:(fun list (i,nonempty) ->
                        if nonempty then i::list else list)
    ~init:[] nonempty

let random_element list =
  let i = Random.int (List.length list) in
  List.nth list i

let rec get_random tree node =
  match node.children with
      Leaf children ->
        if Set.is_empty children then raise Not_found
        else
          let elements = Set.elements children in
          let i = Random.int (Set.cardinal children) in
          List.nth elements i
    | Children children ->
        let nonempty = nonempty_children tree children in
        if List.length nonempty = 0
        then raise (Bug "Internal node with no nonempty children");
        let randchild =
          match children.(random_element nonempty) with
              InMem node -> node
            | OnDisk key -> load_node tree (dbkey_of_key key)
        in
        get_random tree randchild


let set_synctime tree synctime = tree.synctime <- synctime
let get_synctime tree = tree.synctime

let depth tree node = Bitstring.num_bits node.key / tree.bitquantum
let num_elements tree node = node.num_elements


(******************************************************************)
(******************************************************************)
(******************************************************************)