Snippets

cia_rana jupyter_sample

Created by cia_rana last modified
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "This notebook demonstrates how IPython notebooks can be used to discuss the theory and implementation of numerical algorithms on one page.\n",
      "\n",
      "With `ipython nbconvert --to markdown name.ipynb` a notebook like this one can be made into a \n",
      "[blog post](http://georg.io/2013/12/Crank_Nicolson) in one easy step. To display the graphics in your resultant blog post use,\n",
      "for instance, your [Dropbox Public folder](https://www.dropbox.com/help/16/en) that you can \n",
      "[activate here](https://www.dropbox.com/enable_public_folder)."
     ]
    },
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "The Crank-Nicolson Method"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "The [Crank-Nicolson method](http://en.wikipedia.org/wiki/Crank%E2%80%93Nicolson_method) is a well-known finite difference method for the\n",
      "numerical integration of the heat equation and closely related partial differential equations.\n",
      "\n",
      "We often resort to a Crank-Nicolson (CN) scheme when we integrate numerically reaction-diffusion systems in one space dimension\n",
      "\n",
      "$$\\frac{\\partial u}{\\partial t} = D \\frac{\\partial^2 u}{\\partial x^2} + f(u),$$\n",
      "\n",
      "$$\\frac{\\partial u}{\\partial x}\\Bigg|_{x = 0, L} = 0,$$\n",
      "\n",
      "where $u$ is our concentration variable, $x$ is the space variable, $D$ is the diffusion coefficient of $u$, $f$ is the reaction term,\n",
      "and $L$ is the length of our one-dimensional space domain.\n",
      "\n",
      "Note that we use [Neumann boundary conditions](http://en.wikipedia.org/wiki/Neumann_boundary_condition) and specify that the solution\n",
      "$u$ has zero space slope at the boundaries, effectively prohibiting entrance or exit of material at the boundaries (no-flux boundary conditions)."
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Finite Difference Methods"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "Many fantastic textbooks and tutorials have been written about finite difference methods, for instance a free textbook by\n",
      "[Lloyd Trefethen](http://people.maths.ox.ac.uk/trefethen/pdetext.html).\n",
      "\n",
      "Here we describe a few basic aspects of finite difference methods.\n",
      "\n",
      "The above reaction-diffusion equation describes the time evolution of variable $u(x,t)$ in one space dimension ($u$ is a line concentration).\n",
      "If we knew an analytic expression for $u(x,t)$ then we could plot $u$ in a two-dimensional coordinate system with axes $t$ and $x$.\n",
      "\n",
      "To approximate $u(x,t)$ numerically we discretize this two-dimensional coordinate system resulting, in the simplest case, in a\n",
      "two-dimensional [regular grid](http://en.wikipedia.org/wiki/Regular_grid).\n",
      "This picture is employed commonly when constructing finite differences methods, see for instance \n",
      "[Figure 3.2.1 of Trefethen](http://people.maths.ox.ac.uk/trefethen/3all.pdf).\n",
      "\n",
      "Let us discretize both time and space as follows:\n",
      "\n",
      "$$t_n = n \\Delta t,~ n = 0, \\ldots, N-1,$$\n",
      "\n",
      "$$x_j = j \\Delta x,~ j = 0, \\ldots, J-1,$$\n",
      "\n",
      "where $N$ and $J$ are the number of discrete time and space points in our grid respectively.\n",
      "$\\Delta t$ and $\\Delta x$ are the time step and space step respectively and defined as follows:\n",
      "\n",
      "$$\\Delta t = T / N,$$\n",
      "\n",
      "$$\\Delta x = L / J,$$\n",
      "\n",
      "where $T$ is the point in time up to which we will integrate $u$ numerically.\n",
      "\n",
      "Our ultimate goal is to construct a numerical method that allows us to approximate the unknonwn analytic solution $u(x,t)$\n",
      "reasonably well in these discrete grid points.\n",
      "\n",
      "That is we want construct a method that computes values $U(j \\Delta x, n \\Delta t)$ (note: capital $U$) so that\n",
      "\n",
      "$$U(j \\Delta x, n \\Delta t) \\approx u(j \\Delta x, n \\Delta t)$$\n",
      "\n",
      "As a shorthand we will write $U_j^n = U(j \\Delta x, n \\Delta t)$ and $(j,n)$ to refer to grid point $(j \\Delta x, n \\Delta t)$."
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "The Crank-Nicolson Stencil"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "Based on the two-dimensional grid we construct we then approximate the operators of our reaction-diffusion system.\n",
      "\n",
      "For instance, to approximate the time derivative on the left-hand side in grid point $(j,n)$ we use the values of $U$ in two specific grid points:\n",
      "\n",
      "$$\\frac{\\partial u}{\\partial t}\\Bigg|_{x = j \\Delta x, t = n \\Delta t} \\approx \\frac{U_j^{n+1} - U_j^n}{\\Delta t}.$$\n",
      "\n",
      "We can think of this scheme as a stencil that we superimpose on our $(x,t)$-grid and this particular stencil is\n",
      "commonly referred to as [forward difference](http://en.wikipedia.org/wiki/Finite_difference#Forward.2C_backward.2C_and_central_differences).\n",
      "\n",
      "The spatial part of the [Crank-Nicolson stencil](http://journals.cambridge.org/abstract_S0305004100023197)\n",
      "(or see [Table 3.2.2 of Trefethen](http://people.maths.ox.ac.uk/trefethen/3all.pdf))\n",
      "for the heat equation ($u_t = u_{xx}$) approximates the \n",
      "[Laplace operator](http://en.wikipedia.org/wiki/Laplace_operator) of our equation and takes the following form\n",
      "\n",
      "$$\\frac{\\partial^2 u}{\\partial x^2}\\Bigg|_{x = j \\Delta x, t = n \\Delta t} \\approx \\frac{1}{2 \\Delta x^2} \\left( U_{j+1}^n - 2 U_j^n + U_{j-1}^n + U_{j+1}^{n+1} - 2 U_j^{n+1} + U_{j-1}^{n+1}\\right).$$\n",
      "\n",
      "To approximate $f(u(j \\Delta x, n \\Delta t))$ we write simply $f(U_j^n)$.\n",
      "\n",
      "These approximations define the stencil for our numerical method as pictured on [Wikipedia](http://en.wikipedia.org/wiki/Crank%E2%80%93Nicolson_method).\n",
      "\n",
      "![SVG](https://dl.dropboxusercontent.com/u/129945779/georgio/CN-stencil.svg)\n",
      "\n",
      "Applying this stencil to grid point $(j,n)$ gives us the following approximation of our reaction-diffusion equation:\n",
      "\n",
      "$$\\frac{U_j^{n+1} - U_j^n}{\\Delta t} = \\frac{D}{2 \\Delta x^2} \\left( U_{j+1}^n - 2 U_j^n + U_{j-1}^n + U_{j+1}^{n+1} - 2 U_j^{n+1} + U_{j-1}^{n+1}\\right) + f(U_j^n).$$"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Reordering Stencil into Linear System"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "Let us define $\\sigma = \\frac{D \\Delta t}{2 \\Delta x^2}$ and reorder the above approximation of our reaction-diffusion equation:\n",
      "\n",
      "$$-\\sigma U_{j-1}^{n+1} + (1+2\\sigma) U_j^{n+1} -\\sigma U_{j+1}^{n+1} = \\sigma U_{j-1}^n + (1-2\\sigma) U_j^n + \\sigma U_{j+1}^n + \\Delta t f(U_j^n).$$\n",
      "\n",
      "This equation makes sense for space indices $j = 1,\\ldots,J-2$ but it does not make sense for indices $j=0$ and $j=J-1$ (on the boundaries):\n",
      "\n",
      "$$j=0:~-\\sigma U_{-1}^{n+1} + (1+2\\sigma) U_0^{n+1} -\\sigma U_{1}^{n+1} = \\sigma U_{-1}^n + (1-2\\sigma) U_0^n + \\sigma U_{1}^n + \\Delta t f(U_0^n),$$\n",
      "\n",
      "$$j=J-1:~-\\sigma U_{J-2}^{n+1} + (1+2\\sigma) U_{J-1}^{n+1} -\\sigma U_{J}^{n+1} = \\sigma U_{J-2}^n + (1-2\\sigma) U_{J-1}^n + \\sigma U_{J}^n + \\Delta t f(U_{J-1}^n).$$\n",
      "\n",
      "The problem here is that the values $U_{-1}^n$ and $U_J^n$ lie outside our grid.\n",
      "\n",
      "However, we can work out what these values should equal by considering our Neumann boundary condition.\n",
      "Let us discretize our boundary condition at $j=0$ with the \n",
      "[backward difference](http://en.wikipedia.org/wiki/Finite_difference#Forward.2C_backward.2C_and_central_differences) and\n",
      "at $j=J-1$ with the\n",
      "[forward difference](http://en.wikipedia.org/wiki/Finite_difference#Forward.2C_backward.2C_and_central_differences):\n",
      "\n",
      "$$\\frac{U_1^n - U_0^n}{\\Delta x} = 0,$$\n",
      "\n",
      "$$\\frac{U_J^n - U_{J-1}^n}{\\Delta x} = 0.$$\n",
      "\n",
      "These two equations make it clear that we need to amend our above numerical approximation for\n",
      "$j=0$ with the identities $U_0^n = U_1^n$ and $U_0^{n+1} = U_1^{n+1}$, and\n",
      "for $j=J-1$ with the identities $U_{J-1}^n = U_J^n$ and $U_{J-1}^{n+1} = U_J^{n+1}$.\n",
      "\n",
      "Let us reinterpret our numerical approximation of the line concentration of $u$ in a fixed point in time as a vector $\\mathbf{U}^n$:\n",
      "\n",
      "$$\\mathbf{U}^n = \n",
      "\\begin{bmatrix} U_0^n \\\\ \\vdots \\\\ U_{J-1}^n \\end{bmatrix}.$$\n",
      "\n",
      "Using this notation we can now write our above approximation for a fixed point in time, $t = n \\Delta t$, compactly as a linear system:\n",
      "\n",
      "$$\n",
      "\\begin{bmatrix}\n",
      "1+\\sigma & -\\sigma & 0 & 0 & 0 & \\cdots & 0 & 0 & 0 & 0\\\\\n",
      "-\\sigma & 1+2\\sigma & -\\sigma & 0 & 0 & \\cdots & 0 & 0 & 0 & 0 \\\\\n",
      "0 & -\\sigma & 1+2\\sigma & -\\sigma & \\cdots & 0 & 0 & 0 & 0 & 0 \\\\\n",
      "0 & 0 & \\ddots & \\ddots & \\ddots & \\ddots & 0 & 0 & 0 & 0 \\\\\n",
      "0 & 0 & 0 & 0 & 0 & 0 & 0 & -\\sigma & 1+2\\sigma & -\\sigma \\\\\n",
      "0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\\sigma & 1+\\sigma\n",
      "\\end{bmatrix}\n",
      "\\begin{bmatrix}\n",
      "U_0^{n+1} \\\\\n",
      "U_1^{n+1} \\\\\n",
      "U_2^{n+1} \\\\\n",
      "\\vdots \\\\\n",
      "U_{J-2}^{n+1} \\\\\n",
      "U_{J-1}^{n+1}\n",
      "\\end{bmatrix} =\n",
      "\\begin{bmatrix}\n",
      "1-\\sigma & \\sigma & 0 & 0 & 0 & \\cdots & 0 & 0 & 0 & 0\\\\\n",
      "\\sigma & 1-2\\sigma & \\sigma & 0 & 0 & \\cdots & 0 & 0 & 0 & 0 \\\\\n",
      "0 & \\sigma & 1-2\\sigma & \\sigma & \\cdots & 0 & 0 & 0 & 0 & 0 \\\\\n",
      "0 & 0 & \\ddots & \\ddots & \\ddots & \\ddots & 0 & 0 & 0 & 0 \\\\\n",
      "0 & 0 & 0 & 0 & 0 & 0 & 0 & \\sigma & 1-2\\sigma & \\sigma \\\\\n",
      "0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\sigma & 1-\\sigma\n",
      "\\end{bmatrix}\n",
      "\\begin{bmatrix}\n",
      "U_0^{n} \\\\\n",
      "U_1^{n} \\\\\n",
      "U_2^{n} \\\\\n",
      "\\vdots \\\\\n",
      "U_{J-2}^{n} \\\\\n",
      "U_{J-1}^{n}\n",
      "\\end{bmatrix} +\n",
      "\\begin{bmatrix}\n",
      "\\Delta t f(U_0^n) \\\\\n",
      "\\Delta t f(U_1^n) \\\\\n",
      "\\Delta t f(U_2^n) \\\\\n",
      "\\vdots \\\\\n",
      "\\Delta t f(U_{J-2}^n) \\\\\n",
      "\\Delta t f(U_{J-1}^n)\n",
      "\\end{bmatrix}.\n",
      "$$\n",
      "\n",
      "Note that since our numerical integration starts with a well-defined initial condition at $n=0$, $\\mathbf{U}^0$, the\n",
      "vector $\\mathbf{U}^{n+1}$ on the left-hand side is the only unknown in this system of linear equations.\n",
      "\n",
      "Thus, to integrate numerically our reaction-diffusion system from time point $n$ to $n+1$ we need to solve numerically for vector $\\mathbf{U}^{n+1}$.\n",
      "\n",
      "Let us call the matrix on the left-hand side $A$, the one on the right-hand side $B$,\n",
      "and the vector on the right-hand side $\\mathbf{f}^n$.\n",
      "Using this notation we can write the above system as\n",
      "\n",
      "$$A \\mathbf{U}^{n+1} = B \\mathbf{U}^n + f^n.$$\n",
      "\n",
      "In this linear equation, matrices $A$ and $B$ are defined by our problem: we need to specify these matrices once for our\n",
      "problem and incorporate our boundary conditions in them.\n",
      "Vector $\\mathbf{f}^n$ is a function of $\\mathbf{U}^n$ and so needs to be reevaluated in every time point $n$.\n",
      "We also need to carry out one matrix-vector multiplication every time point, $B \\mathbf{U}^n$, and\n",
      "one vector-vector addition, $B \\mathbf{U}^n + f^n$.\n",
      "\n",
      "The most expensive numerical operation is inversion of matrix $A$ to solve for $\\mathbf{U}^{n+1}$, however we may\n",
      "get away with doing this only once and store the inverse of $A$ as $A^{-1}$:\n",
      "\n",
      "$$\\mathbf{U}^{n+1} = A^{-1} \\left( B \\mathbf{U}^n + f^n \\right).$$"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "A Crank-Nicolson Example in Python"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "Let us apply the CN method to a two-variable reaction-diffusion system that was introduced by \n",
      "[Mori *et al.*](http://www.sciencedirect.com/science/article/pii/S0006349508704442):\n",
      "\n",
      "$$\\frac{\\partial u}{\\partial t} = D_u \\frac{\\partial^2 u}{\\partial x^2} + f(u,v),$$\n",
      "\n",
      "$$\\frac{\\partial v}{\\partial t} = D_v \\frac{\\partial^2 v}{\\partial x^2} - f(u,v),$$\n",
      "\n",
      "with Neumann boundary conditions\n",
      "\n",
      "$$\\frac{\\partial u}{\\partial x}\\Bigg|_{x=0,L} = 0,$$\n",
      "\n",
      "$$\\frac{\\partial v}{\\partial x}\\Bigg|_{x=0,L} = 0.$$\n",
      "\n",
      "The variables of this system, $u$ and $v$, represent the concetrations of the active form and its inactive form respectively.\n",
      "The reaction term $f(u,v)$ describes the interchange (activation and inactivation) between these two states of the protein.\n",
      "A particular property of this system is that the inactive has much greater diffusivity that the active form, $D_v \\gg D_u$.\n",
      "\n",
      "Using the CN method to integrate this system numerically, we need to set up two separate approximations\n",
      "\n",
      "$$A_u \\mathbf{U}^{n+1} = B_u \\mathbf{U}^n + \\mathbf{f}^n,$$\n",
      "\n",
      "$$A_v \\mathbf{V}^{n+1} = B_v \\mathbf{V}^n - \\mathbf{f}^n,$$\n",
      "\n",
      "with two different $\\sigma$ terms, $\\sigma_u = \\frac{D_u \\Delta t}{2 \\Delta x^2}$ and $\\sigma_v = \\frac{D_v \\Delta t}{2 \\Delta x^2}$."
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Import Packages"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "For the matrix-vector multiplication, vector-vector addition, and matrix inversion that we will need to carry\n",
      "out we will use the Python library [NumPy](http://www.numpy.org/).\n",
      "To visualize our numerical solutions, we will use [pyplot](http://matplotlib.org/api/pyplot_api.html)."
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import numpy\n",
      "from matplotlib import pyplot"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "Numpy allows us to truncate the numerical values of matrices and vectors to improve their display with \n",
      "[`set_printoptions`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.set_printoptions.html)."
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "numpy.set_printoptions(precision=3)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Specify Grid"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "Our one-dimensional domain has unit length and we define `J = 100` equally spaced\n",
      "grid points in this domain.\n",
      "This divides our domain into `J-1` subintervals, each of length `dx`."
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "L = 1.\n",
      "J = 100\n",
      "dx = float(L)/float(J-1)\n",
      "x_grid = numpy.array([j*dx for j in range(J)])"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 153
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "Equally, we define `N = 1000` equally spaced grid points on our time domain of length `T = 200` thus dividing our time domain into `N-1` intervals of length `dt`."
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "T = 200\n",
      "N = 1000\n",
      "dt = float(T)/float(N-1)\n",
      "t_grid = numpy.array([n*dt for n in range(N)])"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 154
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Specify System Parameters and the Reaction Term"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "We choose our parameter values based on the work by\n",
      "[Mori *et al.*](http://www.sciencedirect.com/science/article/pii/S0006349508704442)."
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "D_v = float(10.)/float(100.)\n",
      "D_u = 0.01 * D_v\n",
      "\n",
      "k0 = 0.067\n",
      "f = lambda u, v: dt*(v*(k0 + float(u*u)/float(1. + u*u)) - u)\n",
      "g = lambda u, v: -f(u,v)\n",
      " \n",
      "sigma_u = float(D_u*dt)/float((2.*dx*dx))\n",
      "sigma_v = float(D_v*dt)/float((2.*dx*dx))\n",
      "\n",
      "total_protein = 2.26"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 155
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Specify the Initial Condition"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "As discussed by\n",
      "[Mori *et al.*](http://www.sciencedirect.com/science/article/pii/S0006349508704442),\n",
      "we can expect to observe interesting behaviour in the steady state of this system\n",
      "if we choose a heterogeneous initial condition for $u$.\n",
      "\n",
      "Here, we initialize $u$ with a step-like heterogeneity:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "no_high = 10\n",
      "U =  numpy.array([0.1 for i in range(no_high,J)] + [2. for i in range(0,no_high)])\n",
      "V = numpy.array([float(total_protein-dx*sum(u))/float(J*dx) for i in range(0,J)])"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 156
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "Note that we make certain that total protein amounts equal a certain value,\n",
      "`total_protein`.\n",
      "The importance of this was discussed by \n",
      "[Walther *et al.*](http://link.springer.com/article/10.1007%2Fs11538-012-9766-5).\n",
      "\n",
      "Let us plot our initial condition for confirmation:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "ylim((0., 2.1))\n",
      "xlabel('x'); ylabel('concentration')\n",
      "pyplot.plot(x_grid, U)\n",
      "pyplot.plot(x_grid, V)\n",
      "pyplot.show()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEECAYAAADK0VhyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFvlJREFUeJzt3XtwlOXZx/HfGkhCJRxUEmsSiKVqyebARlChAqFMQ4PD\nQZGBUGIJ4mRwRkrf2pGxY00cxpGeRpQXjFNAaCEcp1NajlPL2sIwiITKwda2NJQsQscwlEAgYZPc\n7x/0XYgh7CbZ3Sf38v3MZJLdfbL74x7Yi/u6nt11GWOMAAC3tTucDgAAcB7FAABAMQAAUAwAAKIY\nAABEMQAASOrhdIBbcblcTkcAACt19FUD3X5nYIzhyxi9+uqrjmfoLl+sBWvBWtz6qzO6fTEAAEQe\nxQAAQDGwRX5+vtMRug3W4jrW4jrWomtcprMNpihwuVyd7n8BwO2qM8+d7AwAAOEvBjU1NRo9erSy\ns7P10EMP6cc//vFNj5s/f77cbrfy8vJ0+PDhcMcAAHRA2F9nEB8fr2XLlikrK0uXLl1SXl6exo8f\nr9zc3MAxW7Zs0alTp3T8+HEdPnxYJSUl+vOf/xzuKACAEIW9GKSkpCglJUWS1Lt3b+Xk5Oizzz5r\nVQy2b9+u4uJiSZLH41FTU5N8Pp/S0tLCHQcAoq6hQdq7V7Jp5BnRVyCfPHlSBw8e1KpVq1pd7/P5\nlJ6eHriclpbWbjEoKysL/Jyfn88ZAwC6vV27pOeek274P3BEnT/v1fnz3i7dR8SKwaVLlzRt2jQt\nWbJESUlJbW7/4qS7vbeeuLEYAIANGhul/Hxp48ZoPWL+f7+ucbnKO3wPETmbyO/3a+rUqZo5c6am\nTJnS5va0tDTV1NQELtMiAhBLmpqkHt36nd/aCnsxMMbo2WefVWZmpr73ve/d9JgJEyZo7dq1kqSq\nqirFxcUpNTU13FEAwBF+v33FIOxx9+3bp1/96lfKycmRx+ORJL3++us6deqUJKm0tFRTp07Vnj17\n5Ha7lZCQ0GamAAA2a2qSevZ0OkXHhL0YPP7442ppaQl63NKlS8P90ADQLdjYJur2b0ehMqdTAIBl\nyjr+eQbdvhh043gAcFNvvilVV0tLljjz+Lw3EQB0AzbODCgGABBmNs4MKAYAEGY2nlpKMQCAMGNn\nAABgZgAAoE0EABBtIgCAaBMBAMTOAAAgZgYAALEzAACImQEAQLSJAACiTQQAEG0iAIDYGQAAxMwA\nACB2BgAAMTMAAIg2EQBAtIkAAKJNBAAQOwMAgJgZAADEzgAAIGYGAACxMwAAiJkBAEC0iQAAok0E\nABBtIgCA2BkAAMTMAABuey0t177usOzZ1bK4ANC9/X+LyOVyOknHUAwAIIxsbBFJFAMACCsbh8cS\nxQAAwsrG00oligEAhBU7AwAAMwMAADsDAICYGbQyZ84cpaSkKDs7+6a3e71e9e3bVx6PRx6PR4sW\nLYpEDACIOlvbRBGpXyUlJXrhhRf0zDPPtHvMmDFjtHXr1kg8PAA4hjbRDUaNGqX+/fvf8hhjTCQe\nGgAcZWubyJHILpdL+/fvV3Z2tpKTk/Xzn/9cubm5Nz22rKws8HN+fr7y8/OjExIAOsGJnYHX65XX\n6+3SfbhMhP6LfvLkSU2cOFFHjx5tc9ulS5fUo0cPJSYmavfu3SotLVV1dXXbcC4XOwgAVtm/X/qf\n/7n23Smdee505Gyi3r17KzExUZJUUFCg+Ph4nT171okoABBWzAw6oLa2NvDzoUOHVF9fr+TkZCei\nAEBYMTO4QVFRkT744APV1tYqPT1d5eXl8vv9kqTS0lJVVlbq3XfflSTFx8dr3bp1usO2N/8GgJuw\n9dTSiM0MwoGZAQDbbN8uLV167btTrJkZAECssrVNRDEAgDBigAwAsHZmQDEAgDBiZwAAYGYAAKBN\nBAAQbSIAgGgTAQDEzgAAIHtnBiHVr+rqavl8PhljZIyRy+XS6NGjI50NAKxj684gaOQFCxbo17/+\ntdxut+Li4gLXUwwAoC1bZwZBI2/dulV/+9vflJCQEI08AGA1W9tEQWcGmZmZam5ujkYWALBezLaJ\n4uPjlZ2drXHjxgV2By6XS2+99VbEwwGAbWK2TTRp0iRNmjRJLpdLkgIDZABAWzG7M5g9e7YaGhp0\n7NgxuVwuZWVlMT8AgHbYOjMIWgx27dql2bNn64EHHpAk/f3vf9fq1atVUFAQ8XAAYJuY3Rm8+OKL\n+tOf/qSvfvWrkqQTJ05oypQpOnr0aMTDAYBtbJ0ZBD2bqKWlJVAIJGnw4MFqaWmJaCgAsFXMtoly\ncnJUWlqqoqIiGWO0YcMG5eTkRCMbAFjH1jZR0J3BypUrNWjQIP3kJz/RT3/6U2VkZGjVqlXRyAYA\n1rG1TRQ0cq9evfTyyy9HIwsAWM/WnUG7kadNm6ZNmzYpKyurzesKXC6Xjhw5EvFwAGCbmJsZLFmy\nRJK0bds2GWNa3caLzgDg5mzdGbQ7M7jvvvskScuWLVNGRkarr2XLlkUtIADYxNaZQdAB8u7du9tc\n99vf/jYiYQDAdjHXJlq+fLmWLVumEydOKDs7O3D95cuXNXTo0KiEAwDb2NomajfyzJkzVVhYqIUL\nF2rx4sWBuUGvXr2UkpIStYAAYBNb20Qu88Xp8E0YY3TmzBk1NTUFrhs4cGBEg0nXBtUhxAOAbmP4\ncOl//1d65BHnMnTmuTPozGDTpk36yle+ogceeEBjxoxRRkaGCgsLOx0SAGKZrTODoMXglVde0cGD\nB/Xggw+qurpaXq9Xjz32WDSyAYB1bJ0ZBC0Gd955p+655x75/X4ZYzR69Gh99NFH0cgGANaxdWYQ\nNHKfPn10+fJljRw5UkVFRUpOTlZPG/dAABAFtu4Mgg6Q6+vrlZiYKL/frzVr1qihoUHf/va3dffd\nd0c+HANkAJbJyJC83mvfndKZ585bFoPm5mYVFBTo/fff73K4zqAYALBNaqp04ICUluZchrCfTRQX\nF6cePXro4sWLXQoGALcLW9tEQSMnJCQoMzNTBQUF+tKXviTpWtV56623Ih4OAGxj66mlQYvB1KlT\n9dRTTwXeqdQYw7uWAkA7YnZncP78eS1YsKDVdW+++WbEAgGAzWw9tTTo6wxWr17d5roVK1ZEJAwA\n2C7mdgaVlZVat26dqqurNXHixMD1ly9fVr9+/aISDgBsE3Mzg5EjR+rLX/6yPv/8c7344out3rXU\n4/FELSAA2KK5+dr3O4L2XLqfkN611Cm8zgCATRobpaQk6epVZ3NE5F1L161bp4yMDPXu3VtJSUlK\nSkpSnz59bvk7c+bMUUpKSqsPxfmi+fPny+12Ky8vT4cPH+5QaADojmxtEUkhFIOFCxdqx44dunTp\nki5evKiLFy+qrq7ulr9TUlKinTt3tnv7li1bdOrUKR0/flwrVqxQSUlJx5MDQDdj6/BYCqEYZGRk\naMiQIR2601GjRql///7t3r59+3YVFxdLkjwej5qamuTz+Tr0GADQ3dh6WqkUwusMPB6PioqKNGnS\nJMXHx0u61o966qmnOv2gPp9P6enpgctpaWny+XxKc/LNPACgi2zeGQSNfeHCBSUkJGj37t2tru9K\nMZDUZrjR3quay8rKAj/n5+crPz+/S48LAJHi1MzA6/XK6/V26T4idjbRyZMnNXHiRB09erTNbc8+\n+6wKCwv19NNPS5KysrK0a9cupaamtg7H2UQALFJdLY0dK5086WyOiJxNdPz4cT3++OP62te+Jkn6\n5JNPVF5e3rmE/zVhwgStXbtWklRVVaW4uLg2hQAAbGNzmyhoMZgzZ45+9rOfqVevXpKkIUOGaOPG\njbf8naKiIo0cOVKffvqp0tPTtXLlSlVUVKiiokLStTe/S01Nldvt1ty5c7Vq1aow/FEAwFk2n1oa\ntIY1NDTo0UcfDVx2uVyKi4u75e9UVlYGfeClS5eGEA8A7BHTO4O77rpL//jHPwKXf/e730XlIy8B\nwDYxfWrpO++8o+985zv661//qoEDB2rAgAHasGFDNLIBgFVs3hkEjf3QQw9p3759qq2tlTFGAwYM\niEYuALCOzTODoG2il156SXV1dbrnnns0YMAAXbhwQS+//HI0sgGAVWzeGQQtBrt27Wr1xnR9+/bV\njh07IhoKAGxk88wgaDFobGyU3+8PXL569aquXLkS0VAAYCOb20RBa9iMGTM0duxYlZSUyBij9957\nT0VFRdHIBgBWsblNFDT2q6++qpycHP3+97+Xy+XSD37wA02ePDka2QDAKja3iUKK/eSTT+rJJ5+M\ndBYAsJrNO4OIfNIZANyOYnpmsHDhQu3atavDH3ADALebmN4ZdOaTzgDgdhTTM4NIfNIZAMSimG4T\nReqTzgAg1tjcJgoa+7333otCDACwn81toqAzg5MnT6qwsFB9+vRRnz599MQTT+ik05/pBgDdkM07\ng6DFYNasWSoqKtK5c+d07tw5zZgxQ7NmzYpGNgCwis0zg6DF4OLFi3rmmWfUs2dP9ezZU8XFxaqr\nq4tGNgCwSkzvDO68805VVlaqublZzc3NqqysVFJSUjSyAYBVYnpm8Mtf/lKrVq1Sv3791L9/f61e\nvVpr1qyJRjYAsEpMt4nKysq0adMmXbx4UXV1dVq/fr1ee+21aGQDAKvEdJvo2LFj6tu3b+Byv379\ndOTIkYiGAgAbxXSbqLGxsdXA+MKFC2poaIhoKACwkc07g6Cxv/vd72rYsGGaPn26jDHauHGjvv/9\n70cjGwBYxeaZQdBiUFpaquHDh+v999+Xy+XShg0b5PF4opENAKwS0zsDScrLy1NeXl6kswCA1WJ6\nZgAACI3NbSKKAQCEic1tIooBAIQJbSIAADsDAAAzAwCA2BkAAMTMAAAg2kQAANEmAgCINhEAQOwM\nAABiZgAAEDsDAICYGQAARJsIACDaRAAA0SYCAIidQRs7d+5Udna2MjMztXjx4ja3e71e9e3bVx6P\nRx6PR4sWLYpEDACIKptnBmGvYY2NjZo3b5727t2rlJQUjRgxQgUFBfJ4PK2OGzNmjLZu3RruhwcA\nx7AzuMGBAwfkdruVmpqqHj16aPr06dq2bVub44wx4X5oAHAUM4Mb+Hw+paenBy6npaXJ5/O1Osbl\ncmn//v3Kzs7WuHHj9PHHH4c7BgBEHW2iG7hcrqDHPPzww/L5fEpMTNTu3bs1ZcoUVVdX3/TYsrKy\nwM/5+fnKz88PU1IACB9jrhWDuLjoP7bX65XX6+3SfYS9GKSlpammpiZwuaamptVOQZJ69+4d+Lmg\noEDx8fE6e/as7r333jb3d2MxAIDuqrlZuuOOa1/R9sX/KJeXl3f4PsIee/jw4Tp27JhOnz4tv9+v\njRs3qrCwsNUxtbW1gZ8PHTqk+vp6JScnhzsKAESNzcNjKQI7g8TERC1fvlzjx49XS0uLiouLlZeX\np4qKCklSaWmpKisr9e6770qS4uPjtW7dOt3hRDkFgDCxeV4gSS7TjU/rcblcnHUEwAr/+Y+UkXHt\nu9M689zJf8cBIAxsPq1UohgAQFjY3iaiGABAGNg+QKYYAEAY0CYCALAzAAAwMwAAiJ0BAEDMDAAA\nYmcAABAzAwCAaBMBAESbCAAg2kQAALEzAACImQEAQOwMAABiZgAAEG0iAIBoEwEARJsIACB2BgAA\nMTMAAIidAQBAzAwAAGJnAAAQMwMAgGgTAQBEmwgAINpEAACxMwAAiJkBAEDsDAAAYmYAABBtIgCA\naBMBAGR/m6jbR9+82ekEABDcqVMUg4hav97pBAAQ3KBBUna20yk6z2WMMU6HaI/L5VI3jgcA3VJn\nnjuZGQAAKAYAAIoBAEAUAwCAKAYAAEWoGOzcuVPZ2dnKzMzU4sWLb3rM/Pnz5Xa7lZeXp8OHD0ci\nRkzxer1OR+g2WIvrWIvrWIuuCXsxaGxs1Lx587Rz504dOXJEmzdvbvNkv2XLFp06dUrHjx/XihUr\nVFJSEu4YMYe/6NexFtexFtexFl0T9mJw4MABud1upaamqkePHpo+fbq2bdvW6pjt27eruLhYkuTx\neNTU1CSfzxfuKACAEIW9GPh8PqWnpwcup6WltXmiD+UYAED0hP3tKFwuV0jHffHVce39Xqj3dzso\nLy93OkK3wVpcx1pcx1p0XtiLQVpammpqagKXa2pqWu0Cbjzm0UcflXRtp5CWltbmvngrCgCIjrC3\niYYPH65jx47p9OnT8vv92rhxowoLC1sdM2HCBK1du1aSVFVVpbi4OKWmpoY7CgAgRGHfGSQmJmr5\n8uUaP368WlpaVFxcrLy8PFVUVEiSSktLNXXqVO3Zs0dut1sJCQlatWpVuGMAADrCdAM7duwwWVlZ\nZsiQIeaNN9646TEvvPCCyczMNB6Px1RVVUU5YfQEW4s1a9aY7Oxsk5WVZR5++GHz0UcfOZAy8kL5\nO2GMMR9++KGJi4szW7ZsiWK66AplLfbs2WOGDx9ucnNzzejRo6OcMHqCrcWZM2fMN77xDZOZmWke\nfPBB88477ziQMjpKSkpMcnKyycrKaveYjjxvOl4MGhoaTEZGhvH5fMbv95thw4a1Cb1582YzefJk\nY4wxVVVVJjc314moERfKWhw4cMDU1dUZY679wxg6dKgTUSMqlHUwxpimpiYzduxY88QTT5jNmzc7\nkDTyQlmLM2fOGLfbbf79738bY4w5d+6cE1EjLpS1+OEPf2gWLlxojDHm888/N/369TMNDQ1OxI24\nP/7xj6aqqqrdYtDR503H346C1yVcF8paPPLII0pKSpIkff3rX9fp06ediBpRoayDJL399tt6+umn\nNWDAAAdSRkcoa7F+/XpNnz5dycnJkqS77rrLiagRF8papKenq66uTpJUV1enAQMGKCEhwYm4ETdq\n1Cj179+/3ds7+rzpeDHgdQnXdfTPWVFRocmTJ0cjWlSFsg6nT5/Wb37zG82bN09S7J6CHMpafPrp\np/rss880YsQI5eTk6Be/+EW0Y0ZFKGvx3HPP6fjx47rvvvuUm5urJUuWRDtmt9HR5xPHP/Yy3K9L\nsFlH/kxer1crV67Uvn37IpjIGaGsw4IFC/TGG28EPtHpi38/YkUoa9Hc3Kxjx47pD3/4gy5fvqzH\nHntMI0aMkNvtjkLC6AllLV5//XUNHTpUXq9XJ06c0De/+U19/PHHgd307aYjz5uO7ww68rqE/9fe\n6xJsF8paSNKRI0c0d+5cbd269ZbbRFuFsg6HDh3SjBkzdP/992vLli16/vnntXXr1mhHjbhQ1mLg\nwIEqKChQr169dPfdd2vMmDE6cuRItKNGXChrsXfvXk2bNk2SNHjwYN1///36y1/+EtWc3UWHnzfD\nOtHohCtXrphBgwYZn89nrl69aoYNG2YOHTrU6pjNmzebKVOmGGOMOXTokMnJyXEiasSFshb/+te/\nzODBg83+/fsdShl5oazDjWbPnh2zZxOFshZVVVVm3LhxpqmpydTX15vMzExz+PBhhxJHTihr8fzz\nz5uysjJjjDFnz5419957b2CwHouqq6tvOUDuyPOm420iXpdwXShr8dprr+n8+fOBXnnPnj314Ycf\nOhk77EJZh9tFKGvh8Xj0rW99Szk5OfL7/Zo7d66GDh3qcPLwC2UtfvSjH2nWrFnKzMxUc3OzFi1a\nFBisx5qioiJ98MEHqq2tVXp6usrLy+X3+yV17nnTZUyMNlsBACFzfGYAAHAexQAAQDEAAFAMAACi\nGAAdcvDgQeXm5qqxsVH19fXKysrSJ5984nQsoMs4mwjooFdeeUUNDQ26cuWK0tPT9dJLLzkdCegy\nigHQQX6/X8OGDVOvXr20f//+mHxrFNx+aBMBHVRbW6v6+npdunRJV65ccToOEBbsDIAOmjRpkmbO\nnKl//vOfOnPmjN5++22nIwFd5vjbUQA2WbNmjRISEjRjxgy1tLRo5MiR8nq9ys/Pdzoa0CXsDAAA\nzAwAABQDAIAoBgAAUQwAAKIYAABEMQAASPo/3Ve16AM9CtoAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0xd824a90>"
       ]
      }
     ],
     "prompt_number": 157
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "The blue curve is the initial condition for $U$, stored in Python variable `U`,\n",
      "and the green curve is the initial condition for $V$ stored in `V`."
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Create Matrices"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "The matrices that we need to construct are all tridiagonal so they are easy to\n",
      "construct with \n",
      "[`numpy.diagflat`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.diagflat.html)."
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "A_u = numpy.diagflat([-sigma_u for i in range(J-1)], -1) +\\\n",
      "      numpy.diagflat([1.+sigma_u]+[1.+2.*sigma_u for i in range(J-2)]+[1.+sigma_u]) +\\\n",
      "      numpy.diagflat([-sigma_u for i in range(J-1)], 1)\n",
      "        \n",
      "B_u = numpy.diagflat([sigma_u for i in range(J-1)], -1) +\\\n",
      "      numpy.diagflat([1.-sigma_u]+[1.-2.*sigma_u for i in range(J-2)]+[1.-sigma_u]) +\\\n",
      "      numpy.diagflat([sigma_u for i in range(J-1)], 1)\n",
      "        \n",
      "A_v = numpy.diagflat([-sigma_v for i in range(J-1)], -1) +\\\n",
      "      numpy.diagflat([1.+sigma_v]+[1.+2.*sigma_v for i in range(J-2)]+[1.+sigma_v]) +\\\n",
      "      numpy.diagflat([-sigma_v for i in range(J-1)], 1)\n",
      "        \n",
      "B_v = numpy.diagflat([sigma_v for i in range(J-1)], -1) +\\\n",
      "      numpy.diagflat([1.-sigma_v]+[1.-2.*sigma_v for i in range(J-2)]+[1.-sigma_v]) +\\\n",
      "      numpy.diagflat([sigma_v for i in range(J-1)], 1)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 158
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "To confirm, this is what `A_u` looks like:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "print A_u"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "[[ 1.981 -0.981  0.    ...,  0.     0.     0.   ]\n",
        " [-0.981  2.962 -0.981 ...,  0.     0.     0.   ]\n",
        " [ 0.    -0.981  2.962 ...,  0.     0.     0.   ]\n",
        " ..., \n",
        " [ 0.     0.     0.    ...,  2.962 -0.981  0.   ]\n",
        " [ 0.     0.     0.    ..., -0.981  2.962 -0.981]\n",
        " [ 0.     0.     0.    ...,  0.    -0.981  1.981]]\n"
       ]
      }
     ],
     "prompt_number": 159
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Solve the System Iteratively"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "To advance our system by one time step, we need to do one matrix-vector multiplication followed by one vector-vector addition on the right hand side.\n",
      "\n",
      "To facilitate this, we rewrite our reaction term so that it accepts concentration vectors $\\mathbf{U}^n$ and $\\mathbf{V}^n$ as arguments\n",
      "and returns vector $\\mathbf{f}^n$.\n",
      "\n",
      "As a reminder, this is our non-vectorial definition of $f$\n",
      "\n",
      "    f = lambda u, v: v*(k0 + float(u*u)/float(1. + u*u)) - u"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "f_vec = lambda U, V: numpy.multiply(dt, numpy.subtract(numpy.multiply(V, \n",
      "                     numpy.add(k0, numpy.divide(numpy.multiply(U,U), numpy.add(1., numpy.multiply(U,U))))), U))"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 160
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "Let us make certain that this produces the same values as our non-vectorial `f`:"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "print f(U[0], V[0])"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "0.00996135898275\n"
       ]
      }
     ],
     "prompt_number": 161
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "print f(U[-1], V[-1])"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "-0.0623832232232\n"
       ]
      }
     ],
     "prompt_number": 162
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "print f_vec(U, V)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "[ 0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01\n",
        "  0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01\n",
        "  0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01\n",
        "  0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01\n",
        "  0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01\n",
        "  0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01\n",
        "  0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01\n",
        "  0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01\n",
        "  0.01   0.01  -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062 -0.062\n",
        " -0.062 -0.062]\n"
       ]
      }
     ],
     "prompt_number": 163
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "Accounting for rounding of the displayed values due to the `set_printoptions` we set above, we\n",
      "can see that `f` and `f_vec` generate the same values for our initial condition at both ends of our domain."
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "We will use [`numpy.linalg.solve`](http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.solve.html) to solve\n",
      "our linear system each time step."
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "While we integrate our system over time we will record both `U` and `V` at each\n",
      "time step in `U_record` and `V_record` respectively so that we can plot\n",
      "our numerical solutions over time."
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "U_record = []\n",
      "V_record = []\n",
      "\n",
      "U_record.append(U)\n",
      "V_record.append(V)\n",
      "\n",
      "for ti in range(1,N):\n",
      "    U_new = numpy.linalg.solve(A_u, B_u.dot(U) + f_vec(U,V))\n",
      "    V_new = numpy.linalg.solve(A_v, B_v.dot(V) - f_vec(U,V))\n",
      "    \n",
      "    U = U_new\n",
      "    V = V_new\n",
      "    \n",
      "    U_record.append(U)\n",
      "    V_record.append(V)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 164
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Plot the Numerical Solution"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "Let us take a look at the numerical solution we attain after `N` time steps."
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "ylim((0., 2.1))\n",
      "xlabel('x'); ylabel('concentration')\n",
      "pyplot.plot(x_grid, U)\n",
      "pyplot.plot(x_grid, V)\n",
      "pyplot.show()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEECAYAAADK0VhyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHgdJREFUeJzt3Xt4VPWdx/H3kJAEJQTEECUJcrWaK4kgQgWirKHAcnkE\nhCi4Bu2TwnrBp1117WNLdl0X2t1WEaEgrdUWogjFUuW2tQwWNwKSKBCttphohotrkIuEBHL57R+n\nuZGEzExm5kySz+t5zjPnzJyZ+eYnns/8zu9cHMYYg4iIdGnd7C5ARETspzAQERGFgYiIKAxERASF\ngYiIoDAQEREg1O4CLsfhcNhdgohIh+TpWQNB3zMwxmgyhh//+Me21xAsk9pCbaG2uPzkjaAPAxER\n8T+FgYiIKAw6ioyMDLtLCBpqiwZqiwZqi/ZxGG93MAWAw+Hwev+XiEhX5c22Uz0DERHxfRiUlpYy\nbtw4kpOT+da3vsVPfvKTFtd7+OGHSUxMJD09ncLCQl+XISIiHvD5eQZhYWGsXLmSpKQkzp07R3p6\nOhMnTiQ1NbV+nU2bNvHFF19QVFREYWEh2dnZfPDBB74uRURE3OTznkFMTAxJSUkA9OzZk5SUFI4d\nO9Zkna1btzJ//nwA0tLSqK6uxuVy+boUERFxk1/PQC4pKWH//v289NJLTZ53uVzEx8fXL8fFxeFy\nuYiLi2v2GUuWLKmfz8jI0BEDIiKXcDqdOJ3Odn2G38Lg3LlzzJ49m+eee47IyMhmr1860t3apSca\nh4GIiDR36Q/l3Nxcjz/DL0cTVVVVMXPmTO6++25mzJjR7PW4uDhKS0vrl1vrFYiISGD4PAyMMdx/\n//0kJCTw6KOPtrjO5MmTWbduHQAFBQWEhIQQGxvr61JERMRNPj/pbM+ePYwbN46UlJT6XT/PPPMM\nX3zxBQA5OTkAPPjgg+zatYvw8HDWrl1Lenp68+J00pmIiMe82XbqDGQRkU5GZyCLiIhXFAYiIqIw\nEBERhYGIiKAwEBERFAYiIoLCQEREUBiIiAgKAxERQWEgIiIoDEREBIWBiIigMBARERQGIiKCn++B\n7As3rLjB7hKkE2nt9qptvo+W33fp5zVez53XHDiazNe9dul8a4/dHN2azXdzdKtfdmcK6RbSMO8I\nqV+um2/pMbRbaP1yaLfQJsv1r3drWK9uufF7Wlq/8XN1tbX0XON6L32upb+/cbtJy4I+DN6Y+4bd\nJUgn4e29MQwtv+/Sz2u8njuvGUyT+brXLp1v67HW1DaZb7xcU1tT/3zj+brl+nlT0+S5GlNDTW1N\nq4/VtdVU1lY2Wa6urW6y7M5rNebvy5d8R10tl37vpfVe+nfUvdbS3w8N4VsXGC2FaluP0DykGz9X\nN9/4++rm67T3R4Q/6OY2ItIlGPP34Px7kLY2f7nHus9p7bm6eWg57Bu/Xr/s5Wut/p0YhvUd5vG2\nM+h7BiIivuBwOAhxhNhdRtDSALKIiCgMREREYSAiIigMREQEhYGIiKAwEBERFAYiIoLCQEREUBiI\niAgKAxERQWEgIiIoDEREBIWBiIigMBARERQGIiKCwkBERFAYiIgICgMREUFhICIiKAxERASFgYiI\noDAQEREUBiIigsJARERQGIiICAoDERHBT2GwYMECYmJiSE5ObvF1p9NJVFQUaWlppKWl8fTTT/uj\nDBERcVOoPz40Ozubhx56iHvvvbfVdcaPH8+WLVv88fUiIuIhv/QMxo4dS58+fS67jjHGH18tIiJe\n8EvPoC0Oh4P8/HySk5Pp168fP/vZz0hNTW1x3SVLltTPZ2RkkJGREZgiRUQ6CKfTidPpbNdnOIyf\nfqKXlJQwdepUDh061Oy1c+fOERoaSkREBDt37iQnJ4fi4uLmxTkc6kGIiHjIm22nLUcT9ezZk4iI\nCAAyMzMJCwvjxIkTdpQiIiLYFAZlZWX18wcOHKC8vJx+/frZUYqIiOCnMYOsrCx2795NWVkZ8fHx\n5ObmUlVVBUBOTg55eXmsWbMGgLCwMNavX0+3bjrlQUTELn4bM/AFjRmIiHiuw4wZiIhIcFEYiIiI\nwkBERBQGIiKCwkBERFAYiIgICgMREUFhICIiKAxERASFgYiI4Oa1iYqLi3G5XBhjMMbgcDgYN26c\nv2sTEZEAaTMMFi9ezObNm0lMTCQkJKT+eYWBiEjn0eaF6gYPHszHH39MeHh4oGqqpwvViYh4zi8X\nqktISKCmpsbrokREJPi1uZsoLCyM5ORkJkyYUN87cDgcLF++3O/FiYhIYLQZBtOmTWPatGk4HA6A\n+gFkERHpPNy6uU1lZSWHDx/G4XCQlJQUsPEDjRmIiHjOm21nmz2DHTt2cN999zFs2DAA/vrXv/Ly\nyy+TmZnpXZUiIhJ02uwZJCcns3nzZoYOHQrAkSNHmDFjBocOHfJ/ceoZiIh4zC9HE9XW1tYHAcCQ\nIUOora31vDoREQlabe4mSklJIScnh6ysLIwxvPbaa6SkpASiNhERCZA2dxNVVFTw85//nHfffReA\nsWPHsnjxYiIiIvxfnHYTiYh4zJttp1tHE9lFYSAi4jmfHk00e/ZsXn/9dZKSkpqdV+BwODh48KB3\nVYqISNBptWdw7Ngx+vfvz+eff94sYRwOB9ddd53/i1PPQETEYz49mqh///4ArFy5koEDBzaZVq5c\n2b5KRUQkqLR5aOnOnTubPfeHP/zBL8WIiIg9Wh0zWLVqFStXruTIkSMkJyfXP3/+/HmGDx8ekOJE\nRCQwWh0zOHPmDKdOneKJJ55g2bJl9fufevToQUxMTGCK05iBiIjH/HZoqTGG48ePU11dXf/cgAED\nPK/QQwoDERHP+eVyFK+//jqDBw9m2LBhjB8/noEDBzJp0iSvixQRkeDTZhg89dRT7N+/n+uvv57i\n4mKcTie33HJLIGoTEZEAaTMMrrzySq6++mqqqqowxjBu3Djef//9QNQmIiIB0uaF6nr16sX58+cZ\nM2YMWVlZ9OvXj+7duweiNhERCZA2B5DLy8uJiIigqqqKV155hcrKSu655x769u3r/+I0gCwi4jGf\nH01UU1NDZmYmb7/9druL84bCQETEcz6/7WVISAihoaF88803REZGtqs4ERFxjzFw+jSUlcHXX8Op\nU9Z09ix88w2cOwfnz0NFhTVduADV1Q2TN9ocMwgPDychIYHMzEyuuOIKwEqd5cuXe/eNIiJdmDHW\nhv2zz6ypuBhcLigttR5PnID/+z/o0QOuvhr69oU+faypVy+IjISePa3XIiKs9cLDoXt3CA21pjfe\n8LyuNsNg5syZ3HnnnfWXsTbGNLuktYiINPf11/DBB9b00Ufw8cfwl79Yv96HDIHBg2HgQBg2DG67\nDWJj4dprITra2sgHUpthcOrUKRYvXtzkuWeffdZvBYmIdEQVFVBQAPn58N57sG+ftasnNRWGD4cR\nI2D+fLjxRmtjH2y/qds8migtLY3CwsImzyUnJ3Po0CG/FgYaQBaR4FVdDXv3wp/+ZE3791sb+ltu\ngdGj4eabrV/+3do8m8v3fDqAnJeXx/r16ykuLmbq1Kn1z58/f57evXt7X6WISAd15gxs2wZ/+ANs\n3w7x8XDHHfDYY3Drrdb+/I6q1TAYM2YM1157LV999RU/+MEPmly1NC0tLWAFiojY6dw5a+P/2muw\naxeMGwdTp8KyZRAXZ3d1vuPWVUvtot1EImIHY6xdQGvXwsaN1m6fuXNhxgyIirK7urb55aql69ev\nZ+DAgfTs2ZPIyEgiIyPp1avXZd+zYMECYmJimtwU51IPP/wwiYmJpKenNxuTEBGxQ0UFrFljDfrO\nmwdDh1pH/2zbBv/0Tx0jCLzVZs9gwIAB7NixgxtvvNHtD/3zn/9Mz549uffee1scaN60aRO/+c1v\neOONNygsLCQ7O5sPPvigeXHqGYhIAHz1FbzwAqxaBSNHwqOPWod62jH46wt+6RkMHDjQoyAAGDt2\nLH369Gn19a1btzJ//nzAOlqpuroal8vl0XeIiLTXyZPwxBNwww1w7Bg4nfDmmzBhQscNAm+1eZ5B\nWloaWVlZTJs2jbCwMMBKnTvvvNPrL3W5XMTHx9cvx8XF4XK5iOtMozEiErS++Qb+67+s3sCsWVBY\nCAG4eWNQazMMzpw5Q3h4ODt37mzyfHvCAGjWhWntrOYlS5bUz2dkZJCRkdGu7xWRrqu2Fn7zG3jy\nSbj9duvcgEGD7K6q/ZxOJ06ns12f4bejiUpKSpg6dWqLYwb3338/kyZNYtasWQAkJSWxY8cOYmNj\nmxanMQMR8ZH334dFi6zdP889B6NG2V2R//hlzKCoqIhbb72VG264AYCPPvqI3Nxc7yr8u8mTJ7Nu\n3ToACgoKCAkJaRYEIiK+UFFhnRQ2ZQr88z/D//5v5w4Cb7XZMxg1ahTLly/ne9/7HoWFhRhjSEpK\noqioqNX3ZGVlsXv3bsrKyoiJiSE3N5eqqioAcnJyAHjwwQfZtWsX4eHhrF27lvT09ObFqWcgIu3w\nzjtw//1w002wfDn062d3RYHh8/sZAFRWVjKqUYw6HA5CQkIu+568vLw2v3jFihVulCci4rnqasjN\nhV/+0jpcdPp0uysKfm2GwVVXXcXf/va3+uU333wzILe8FBHxRkkJ3H23de3/wkKIibG7oo6hzd1E\nn3zyCQsWLKCgoIDo6Giio6N57bXXGDp0qP+L024iEfHAm2/CggXw+OPWiWNd7VyBOj6/B3JjZWVl\nGGOIjo72qjhvKAxExB3GwDPPWLuEXn/dupZQV+aXo4kef/xxzp49y9VXX010dDRnzpzhySef9LpI\nERFfOncO7rrLurLovn0KAm+1GQY7duxocmG6qKgotm3b5teiRETcceIEjB9v3RPY6YT+/e2uqONq\nMwwuXLhQf1gowMWLF6moqPBrUSIibfn0UxgzxjpS6Fe/sm4OL95r82iiuXPnctttt5GdnY0xhl//\n+tdkZWUFojYRkRbt3WvdW+Df/x0eeMDuajoHtwaQN2/ezB//+EccDgd33HEH0wN00K4GkEXkUk4n\nzJ4NL70E//iPdlcTnPx6NJEdFAYi0tj//A/ccw9s2AC6ZmXrguZOZyIivrZtmxUEv/udgsAf/HKn\nM19Rz0BEoOG2k7//vQ4ddYdfrk3kzZ3ORER8ZfduuPde2LJFQeBPttzpTETEHe+/bw0Wv/qqgsDf\nbLvTmYjI5RQVWUcLvfiidU9i8S8dTSQiQcflsnoC//mfMG+e3dV0PH45mqikpIRJkybRq1cvevXq\nxZQpUygpKfG2RhGRyzpzBiZPhoceUhAEUpthMG/ePLKysjh58iQnT55k7ty5zNN/IRHxg4sXYdYs\nGDsW/uVf7K6ma2lzN1Fqaioffvhhk+dSUlI4ePCgXwsD7SYS6UqMgexs+Ppr61yC0DZHNKU1ftlN\ndOWVV5KXl0dNTQ01NTXk5eURGRnpdZEiIi1ZtgwOH4a8PAWBHdrsGRw5coSFCxeSn5+Pw+FgzJgx\nvPDCCwwZMsT/xalnINIlbNkCixZZF6CLjbW7mo7PL9cmmj9/PitWrCAqKgqA06dP88gjj/Dyyy97\nX6m7xSkMRDq9Q4fg9tvhrbfg5pvtrqZz8MtuosOHD9cHAUDv3r0DMl4gIp1fWZl1P4Jnn1UQ2M2t\nm9ucPXu2fvnMmTNUVlb6tSgR6fyqq2HOHOuWlffcY3c10uYwzSOPPMKIESOYM2cOxhg2bNjA97//\n/UDUJiKd2JNPQkgI/Md/2F2JgJtnIBcUFPD222/jcDiYMGECaWlpgahNYwYindTrr8Njj1nXHurb\n1+5qOh/d3EZEgl5RkXU/gh07ID3d7mo6J78MIIuI+MrZs3DnnfDTnyoIgo16BiISEMbA3LkQFQVr\n1thdTefml5vbiIj4wgsvwKefQn6+3ZVIS9QzEBG/27fPujdBfj4E4OIFXZ7GDEQk6Hz9tXU+wS9+\noSAIZuoZiIjfGAMzZsDgwfDzn9tdTdehMQMRCSrPPgsnTljnFUhwU89ARPyibpxg714YNMjuaroW\njRmISFA4dcoaJ1i9WkHQUahnICI+ZYx1YtmAAfDcc3ZX0zVpzEBEbLd8OZSWwquv2l2JeEI9AxHx\nmf37YcoUeO896wgisYfGDETENqdPW+MEq1YpCDoi9QxEpN2MgVmz4NprYcUKu6sRjRmIiC2WL4eS\nEli3zu5KxFvqGYhIu7z3HkybpnGCYKIxAxEJqJMnrXGCNWsUBB2degYi4pXaWpg6FW64Af77v+2u\nRhoLmp7B9u3bSU5OJiEhgWXLljV73el0EhUVRVpaGmlpaTz99NP+KENE/GjpUutM46VL7a5EfMHn\nA8gXLlxg4cKF7Nmzh5iYGEaPHk1mZiZpaWlN1hs/fjxbtmzx9deLSADs3GkdNbR/P3Tvbnc14gs+\n7xns3buXxMREYmNjCQ0NZc6cObz11lvN1tPuH5GOqaQE7r0X8vIgNtbuasRXfB4GLpeL+Pj4+uW4\nuDhcLleTdRwOB/n5+SQnJzNhwgQ+/PBDX5chIn5QWQkzZ8Jjj8H48XZXI77k891EDoejzXVuuukm\nXC4XERER7Ny5kxkzZlBcXNziukuWLKmfz8jIICMjw0eViognjIFFi2DYMHj0UburkcacTidOp7Nd\nn+HzMIiLi6O0tLR+ubS0tElPAaBnz57185mZmYSFhXHixAmuueaaZp/XOAxExD7PPgsHDsC774Ib\nv/kkgC79oZybm+vxZ/h8N9HIkSM5fPgwR48epaqqig0bNjBp0qQm65SVldXPHzhwgPLycvr16+fr\nUkTER7Zvh5/+FLZsgUa/5aQT8XnPICIiglWrVjFx4kRqa2uZP38+6enprF69GoCcnBzy8vJYs2YN\nAGFhYaxfv55u3XT+m0gw+stfrAHjzZvhuuvsrkb8RSediUirTp6E0aPhX/8VsrPtrkbc5c22U2Eg\nIi2qqIB/+Ae49VZo4dxRCWIKAxHxiZoauOsuCA+H3/4WtBe3Y9ElrEWk3YyxDh09dQq2bVMQdBUK\nAxFpYtky2LUL/vxnq2cgXYPCQETqLV8Oa9fC7t3Qu7fd1UggKQxEBIAXX7QuRf3OO7rmUFekMBAR\nfvtbyM0Fp1PnEnRVGhoS6eLWrrUuPLdzJwwdanc1Yhf1DES6sJ/9zBon2L3bugCddF0KA5EuyBj4\n8Y9hwwbrqKFLriUpXZDCQKSLuXgRFi6EwkJrsFjXiBTQmIFIl1JWBnfcAV9/rSCQphQGIl1EURGM\nGgXf/jZs2qRLUUtTCgORTs4Y+PWvISMDliyBZ57RJSakOY0ZiHRi33xjjQ988IF1DkFiot0VSbDS\n7wORTuqddyA9Ha64AvbtUxDI5alnINLJnD4Njz8Ob70FK1bAjBl2VyQdgXoGIp1EbS2sX2/1ALp1\nswaMFQTiLvUMRDoBpxN+8AMrBDZssI4YEvGEwkCkA3v3XevooI8/th7vuktHCol3FAYiHUxtrXUH\nsqVL4dgxq0fwu9/pRjTSPgoDkQ7ixAnrfIEXX4SoKOtKo7NmQaj+LxYf0D8jkSB29ixs2dJwQblZ\ns+DVV2HECHA47K5OOhOHMcbYXURrHA4HQVyeiF8UF8OOHbB1q3Vp6fHjYfZsmD4devWyuzrpCLzZ\ndioMRGxkDHz+OezZY027dlnnCUycaE1TpuhexOI5hYFIEKuqgiNHrOP/CwutqaDACoSxY+HWW63H\n4cN1RJC0j8JAxEbGwKlT4HJBaSmUlMBnn1nTp59aj7GxkJBgbfDT0yEtDQYM0P5/8S2FgYgP1NZC\nebl1kbdz56xB3DNnrN03p09b9wI4edKavvoKvvzSOtLnyy+twzvj4qyN/qBBMHiwNQ0dCtdfDz16\n2P3XSVfQKcPg7beDtrwm7GxFd7+78XqXe8/l1jOm4bnWXrt0ndaWa2ubz7f0WDfV1FhT4/m6qbq6\n4bGqyprq5i9ebHi8cKFhqqxsmCoqrAAoL7deu+IKiIxsmKKirH33UVHQt681XXUVREdDTAxcc431\nqHsESDDolGFw221BW14zdnb13f3uxutd7j2XW8/haHiutdcuXefS5W7dGp67dL7xckhIw3JISMPU\nrVvT5dBQawoJge7dG6bQUAgLs6bu3a1f7nVTRIT1S73u8corrRCIiNA+e+nYOmUYBHF5IiJByZtt\np37/iIiIwkBERBQGIiKCwkBERFAYiIgICgMREUFhICIiKAxERASFgYiIoDAQEREUBiIigsJARERQ\nGIiICH4Kg+3bt5OcnExCQgLLli1rcZ2HH36YxMRE0tPTKSws9EcZnYrT6bS7hKChtmigtmigtmgf\nn4fBhQsXWLhwIdu3b+fgwYNs3Lix2cZ+06ZNfPHFFxQVFfHLX/6S7OxsX5fR6egfegO1RQO1RQO1\nRfv4PAz27t1LYmIisbGxhIaGMmfOHN56660m62zdupX58+cDkJaWRnV1NS6Xy9eliIiIm3weBi6X\ni/j4+PrluLi4Zht6d9YREZHACfX1BzrcvP/ipXfhae197n5eV5Cbm2t3CUFDbdFAbdFAbeE9n4dB\nXFwcpaWl9culpaVNegGN1xk1ahRg9RTi4uKafZZueSkiEhg+3000cuRIDh8+zNGjR6mqqmLDhg1M\nmjSpyTqTJ09m3bp1ABQUFBASEkJsbKyvSxERETf5vGcQERHBqlWrmDhxIrW1tcyfP5/09HRWr14N\nQE5ODjNnzmTXrl0kJiYSHh7OSy+95OsyRETEEyYIbNu2zSQlJZkbb7zRLF26tMV1HnroIZOQkGDS\n0tJMQUFBgCsMnLba4pVXXjHJyckmKSnJ3HTTTeb999+3oUr/c+ffhDHG7Nu3z4SEhJhNmzYFsLrA\ncqctdu3aZUaOHGlSU1PNuHHjAlxh4LTVFsePHze33367SUhIMNdff735xS9+YUOVgZGdnW369etn\nkpKSWl3Hk+2m7WFQWVlpBg4caFwul6mqqjIjRoxoVvTGjRvN9OnTjTHGFBQUmNTUVDtK9Tt32mLv\n3r3m7Nmzxhjrf4zhw4fbUapfudMOxhhTXV1tbrvtNjNlyhSzceNGGyr1P3fa4vjx4yYxMdF8+eWX\nxhhjTp48aUepfudOW/zwhz80TzzxhDHGmK+++sr07t3bVFZW2lGu373zzjumoKCg1TDwdLtp++Uo\ndF5CA3fa4uabbyYyMhKAb3/72xw9etSOUv3KnXYAeP7555k1axbR0dE2VBkY7rTFq6++ypw5c+jX\nrx8AV111lR2l+p07bREfH8/Zs2cBOHv2LNHR0YSHh9tRrt+NHTuWPn36tPq6p9tN28NA5yU08PTv\nXL16NdOnTw9EaQHlTjscPXqU3//+9yxcuBDovIcgu9MWn3zyCceOHWP06NGkpKSwdu3aQJcZEO60\nxXe/+12Kioro378/qampPPfcc4EuM2h4uj3x+QCyp3x9XkJH5snf5HQ6+dWvfsW7777rx4rs4U47\nLF68mKVLl+JwODDW7s4AVBZ47rRFTU0Nhw8f5k9/+hPnz5/nlltuYfTo0SQmJgagwsBxpy2eeeYZ\nhg8fjtPp5MiRI9xxxx18+OGH9b3prsaT7abtPQNPzkuo09p5CR2dO20BcPDgQR544AG2bNly2W5i\nR+VOOxw4cIC5c+cyaNAgNm3axKJFi9iyZUugS/U7d9piwIABZGZm0qNHD/r27cv48eM5ePBgoEv1\nO3faYs+ePcyePRuAIUOGMGjQID7++OOA1hksPN5u+nREwwsVFRXmuuuuMy6Xy1y8eNGMGDHCHDhw\noMk6GzduNDNmzDDGGHPgwAGTkpJiR6l+505bfP7552bIkCEmPz/fpir9z512aOy+++7rtEcTudMW\nBQUFZsKECaa6utqUl5ebhIQEU1hYaFPF/uNOWyxatMgsWbLEGGPMiRMnzDXXXFM/sN4ZFRcXX3YA\n2ZPtpu27iXReQgN32uLf/u3fOHXqVP2+8u7du7Nv3z47y/Y5d9qhq3CnLdLS0vjOd75DSkoKVVVV\nPPDAAwwfPtzmyn3Pnbb40Y9+xLx580hISKCmpoann366fmC9s8nKymL37t2UlZURHx9Pbm4uVVVV\ngHfbTYcxnXRnq4iIuM32MQMREbGfwkBERBQGIiKiMBARERQGIh7Zv38/qampXLhwgfLycpKSkvjo\no4/sLkuk3XQ0kYiHnnrqKSorK6moqCA+Pp7HH3/c7pJE2k1hIOKhqqoqRowYQY8ePcjPz++Ul0aR\nrke7iUQ8VFZWRnl5OefOnaOiosLuckR8Qj0DEQ9NmzaNu+++m88++4zjx4/z/PPP212SSLvZfjkK\nkY7klVdeITw8nLlz51JbW8uYMWNwOp1kZGTYXZpIu6hnICIiGjMQERGFgYiIoDAQEREUBiIigsJA\nRERQGIiICPD/nl62oEp/gH0AAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x3a764d0>"
       ]
      }
     ],
     "prompt_number": 165
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "And here is a [kymograph](http://en.wikipedia.org/wiki/Kymograph) of the values of `U`.\n",
      "This plot shows concisely the behaviour of `U` over time and we can clear observe the wave-pinning\n",
      "behaviour described by [Mori *et al.*](http://www.sciencedirect.com/science/article/pii/S0006349508704442).\n",
      "Furthermore, we observe that this wave pattern is stable for about 50 units of time and we therefore\n",
      "conclude that this wave pattern is a stable steady state of our system."
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "U_record = numpy.array(U_record)\n",
      "V_record = numpy.array(V_record)\n",
      "\n",
      "fig, ax = subplots()\n",
      "xlabel('x'); ylabel('t')\n",
      "heatmap = ax.pcolor(x_grid, t_grid, U_record, vmin=0., vmax=1.2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEICAYAAABbOlNNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9sleX9//HXoS1FUH615Ye0KuOzj66l5YeM6IaTxQ8q\nNfFHdAEdZNO5Md1i3JLFxWUD/Owztv2xaMxmSBxLtmYRJiaTFRtNZt1Xp5YUIjIX8/0w9dtTFVoQ\nEVranvb+/sE857ouet/c5/Q+v5+P5IT7Ptd97l69yrne5/p5Yp7neQIA4N8m5TsDAIDCQmAAAFgI\nDAAAC4EBAGAhMAAALAQGAIAl8sDQ09OjL33pS2pubtbll1+uX/7yl5Kk48ePa82aNWppadENN9yg\nEydOJF+zbds2NTY2qrm5Wc8//3zUWQIApCEW9TqGI0eOqK+vT4sXL9apU6e0fPly/elPf9KTTz6p\nRYsW6cEHH9Sjjz6qd955R4899pi6u7v17W9/W6+99po+/PBDrVq1Sm+//bYmT54cZbYAACFF3mKY\nO3euFi9eLEm68MIL1dLSot7eXu3du1cbN26UJG3YsEHt7e2SpPb2dq1fv14VFRVasGCBmpqa1NXV\nFXW2AAAhZXWM4d1339W+ffu0atUq9fX1qaamRpJUW1uro0ePSpJ6e3tVX1+ffE19fb3i8Xg2swUA\nCFCZrRufOnVKd9xxhx577DFNnz59QveKxWIR5QoAyksmowVZCQwjIyO6/fbb9dWvflW33nqrJKmu\nrk79/f2qra1VX1+f5syZI+lsC6Gnpyf52ng8roaGhnNvWsuWTpKkgS3S1C35zkVhmEhZVGXwmqB3\nS1Bahc/PdV9jnk9x0qb4HE/7979vbZEat0gXGWkzfY4lqdY4nuekmef1ieThnEvety67WKnzBvVY\nafONtIV61/c689y83/wh+2dN6xlLndhJ9vlRactz0pa1ko441500jo85aR8bx6d9jt3zIeP4jHOd\nkTbopI2Mpo4TCeP5hH2dc5q6zuf58SxM41pT5F1JnufpG9/4hhobG/W9730v+Xxra6va2tokSW1t\nbWptbU0+v3PnTiUSCcXjcR06dEgrV66MOlsAgJAibzG88soramtrU0tLi5YtWybp7HTUrVu3at26\nddqxY4fmzZunXbt2SZKuvPJK3XbbbWppadGkSZO0fft2VVVl8nEOABCFyAPDqlWrNDY2Nm7aCy+8\nMO7zDz/8sB5++OGos1KaqlbnOweFg7JIqVud7xwUjNX/ke8cFD9WPhcbKsMUyiKFwJC0+rP5zkHx\nIzAAACwEBgCAhcAAALAQGAAAFgIDAMBCYAAAWAgMAAALgQEAYCEwAAAsBAYAgIXAAACwEBgAABYC\nAwDAQmAAAFgIDAAAC4EBAGAhMAAALAQGAICFwAAAsBAYAAAWAgMAwEJgAABYCAwAAAuBAQBgITAA\nACwEBgCAhcAAALAQGAAAFgIDAMBCYAAAWAgMAAALgQEAYCEwAAAsBAYAgIXAAACwEBgAABYCAwDA\nQmAAAFgIDAAAC4EBAGAhMAAALAQGAICFwAAAsBAYAAAWAgMAwEJgAABYIg8M99xzj+bOnavm5ubk\nc1u2bFF9fb2WLVumZcuW6bnnnkumbdu2TY2NjWpubtbzzz8fdXYAAGmKPDDcfffd6ujosJ6LxWL6\n/ve/rwMHDujAgQNau3atJKm7u1vPPPOM3nzzTXV0dGjTpk0aHh6OOksAgDREHhiuueYazZo165zn\nPc8757n29natX79eFRUVWrBggZqamtTV1RV1lgAAacjZGMOvf/1rfe5zn9OGDRt0/PhxSVJvb6/q\n6+uT19TX1ysej49/g4EtqcdIZ7azCwBF5zVJjxqPTOUkMHznO9/R4cOH9dZbb2nRokV64IEH0r/J\n1C2pR9XqaDMIACXgKkkPGo9M5SQw1NbWKhaLKRaLadOmTdq3b5+ksy2Enp6e5HXxeFwNDQ25yBIA\nwEdOAsPRo0eTx7t371ZTU5MkqbW1VTt37lQikVA8HtehQ4e0cuXKXGQJAOCjMuob3nnnnXrppZfU\n39+vhoYGbd26VS+++KIOHjyo4eFhXXrppfrtb38rSbryyit12223qaWlRZMmTdL27dtVVVUVdZYA\nAGmIeeNNFyowsVhMqi34bKKYZPL5I+hjVFBahc/PdV9jnk9x0qb4HE9zrrvIOJ7pcyxJtcbxPCfN\nPK9PJA/nXPK+ddnFSp03qMdKm2+kLdS7vteZ5+b95g/ZP2taz1jqxE6yz48ax0ec604ax8ectI+N\n49M+x+75kHF8xrnOSBt00kZGU8eJhPF8wr7OOU1d5/P8eBZq/Bmh58PKZwCAhcAAALAQGAAAFgID\nAMBCYAAAWCKfrgoABYHaLWO0GAAAFgIDAMBCYAAAWAgMAAALgQEAYCEwAAAsBAYAgIXAAACwEBgA\nABYCAwDAQmAAAFgIDAAAC4EBAGAhMAAALGxMC2DCEqrIdxYQIVoMAAALgQEAYCEwAAAsBAYAgIXA\nAACwEBgAABamqwLIm1GmuRYkWgwAAAuBAQBgITAAACwEBgCAhcAAALAwKwlAVrHBXvGhxQAAsBAY\nAAAWAgMAwEJgAABYCAwAAAuBAQBgYboqUO5G8p0BFBpaDAAACy0GoFQl8p0BFCtaDAAAC4EBAGAh\nMAAALAQGAIAl8sBwzz33aO7cuWpubk4+d/z4ca1Zs0YtLS264YYbdOLEiWTatm3b1NjYqObmZj3/\n/PNRZwcAkKbIA8Pdd9+tjo4O67nNmzfrpptu0sGDB7V27Vpt3rxZktTd3a1nnnlGb775pjo6OrRp\n0yYNDw9HnSUg+xLGA74SqrAeKEyRB4ZrrrlGs2bNsp7bu3evNm7cKEnasGGD2tvbJUnt7e1av369\nKioqtGDBAjU1NamrqyvqLAEA0nDewPDQQw+Fei5IX1+fampqJEm1tbU6evSoJKm3t1f19fXJ6+rr\n6xWPx8e/ycCW1GOkM62fDwDl4DVJjxqPTJ03MIzX779nz54J/MgMTd2SelStzv3PB8rc6FiF9UDh\nuUrSg8YjU74rn5944gn95je/0eHDh62B5IGBAS1dujStH1JXV6f+/n7V1taqr69Pc+bMkXS2hdDT\n05O8Lh6Pq6GhId3fAQAQId8Ww1133aU9e/bo5ptv1l/+8hft2bNHe/bs0d///nft3r07rR/S2tqq\ntrY2SVJbW5taW1uTz+/cuVOJRELxeFyHDh3SypUrJ/DrAAAmyrfFMGPGDM2YMUNPPfVUWje88847\n9dJLL6m/v18NDQ165JFHtHXrVq1bt047duzQvHnztGvXLknSlVdeqdtuu00tLS2aNGmStm/frqqq\nqon9RgCACYl5nuflOxPnE4vFpNqCzyaKSSafP8JuOeleZ3bHVwVcZ55PcdKm+BxPc667yDi+0Diu\nda4zz2ucNLM3tz41/7am/oh92aRUN/B8ve/coue8x5J0iU/a/CH7ftN6xlIndpJ9ftQ4PuZcdzwg\n7WPj+LTPsXs+ZByfca4z0gadtJHR1HHCmN484kx19pv5nM4u6QslZVLFs/IZAGAhMAAALAQGAICF\nwAAAsBAYAAAWAgMAwMJ3PgPFbPT8lwDposUAALAQGAAAFrqSAGSEL9opXbQYAAAWAgMAwEJgAABY\nCAwAAAuDzwBs5n7PCQaYyxGBASgGfpvzF8r9UFLoSgIAWAgMAAALXUlAOaDrCGkgMAClhACACNCV\nBACw0GIAUBDYe2niRiK6Dy0GAICFwAAAsNCVBCByo1FXLUG9TGVQi0XVRRRWGRQpgGwLCgSRB4lC\nVGKzwehKAgBYyiCUA0XI7TsokXeq23rwm4k0Wun+wsNZyhHGUyL/3QBkW8LdaXVyfvKB7CMwAMXG\nbE1MyVsuUMIIDEC5G830ZQVYfZThGrlszFgqwL8sAAQolMq/xGYimZiVBACw0GIAYLO+2jOWt2wg\nf2gxAAAstBgARG40g4GAghzMzrKRAh2nKL+/BFAugiqdiCukoECQSZAodoVa4YdFYACQM26QKMdW\ngp9CiiX8VYBcMiedF9m7bzThZJiVzyWryP5rAiXE/YiYzXdjFj6OZrOLaLTCuXfUZZPHmi8xwb9F\nLrbgZlYSAMBCiwEodzkcpEZ4uf5yHhOBAYAtg2Bw7qByhW9a5Mpv0lPWERiAYuZW4gX+CT+Saa3U\nWllHEQMIZTTh3yrI+J7Z/LhP7ZYxig4oR/nswC5EJVITRtVgLJHiAFBIJtoSOOf1YWuqAqzRRjL8\nvgvrHhO/RVpyWoyXXXaZpk+froqKClVVVamrq0vHjx/XunXrdOTIEc2fP187d+7UzJkzc5ktoDCY\nH/cKZUA15EdQv+9ulgpoS4wCyUYxyOk6hlgsps7OTh04cEBdXV2SpM2bN+umm27SwYMHtXbtWm3e\nvDmXWQKyb9R45NJIwMOUCHgYRhMV1iOh1COsUVWEeiA8nz/XhOR8gZvnedb53r17tXHjRknShg0b\n1N7enussAYUvG+9+wEdOu5JisZjWrFmjRCKhb33rW/rud7+rvr4+1dTUSJJqa2t19OjR8V88sCV1\nXLX67APIpVxuYREk1y2PENzN8MxWRDotilCvccu9AMcV8qVL0r4I7pPTIn3ttdc0Z84c9fX16cYb\nb9QVV1wR/sVTt2QtXygDVfnOQIEJG1wibqFkEiQkUfmHtPLfj0/9OsP75LS458yZI0mqq6vTHXfc\noX379qmurk79/f2qra1VX19f8hoAGchk+krIRXKJkei3zJ5oy6LYmUUd9k+Xi97EnI0xDAwMaGBg\nQJJ0+vRpdXR0qKmpSa2trWpra5MktbW1qbW1NVdZAhCRcweQK8d9oDjk7C915MgR3XrrrYrFYhoY\nGND69et18803a9WqVVq3bp127NihefPmadeuXbnKElC43K4ev64w9+Njtc89Mh2XiHgCfdjgEHhd\n0C0qfY4LSNhvdyuLTfQWLlyoN95445znZ8+erRdeeCFX2QCQobFRu7qIZkuMynGPXZ7xo2JuYoEG\ngHyIKphQpEA5Svgcj3ceQtjdVctljcJEv4znnPsFpGWjZUFgAOAvoAsq6k30sh5AzNou09v71dAF\nOIV4IggMQDlI5xOs30fQRPhtL6Ku8M1erMqgW5RHgyTrCAxAsQmq5M1PrmG/mS3Db3AbHTNq4Qzn\nN/oFirQCiN+lBRIkou5WysWgNIEBQDgBLQZ3DYLf+oRMN9uzWgwlWmsV0k7oJVrEgEprtbNZa1T6\nPC9JUyL4WSH7yxNmoJjs3iJc1ZIo80HqoGCQSUOD72MAEF6G3UV2l9M5E0WTggJB2CmpGYti7QI1\noYXiAEpVFMEg4PnRhFHhTw43+OwyA0VQl1OiIjWIUV055ns/S4FutpfJp/qoWxbnUyBFBcB6h2f6\nzsxhreN+B7SVFnJQOWyX0ag1sDBsJ2ZSVmFXT5cpigClo9jGFNwKOZv5d39W2GAQcvZScKvAv/Vg\np4XscgqKJWVQo+ViE70yKEYgx6L43gb3HhU+aXl8B5sthqBZSeG7lQICSEVANPBLcsumwMezo6jw\n2RIDkIqvlZBLQbVE0AZ7IVsM5jbc7if8sGMHYRfCWef57AYy73964rcL+hOZaWyJAZwPwcCfWYP4\n7bSaKacGMjfVy7SLKKPvY4hiUDnLrYkRo7zD7qZaSAgMKEylWvmbFXQ6lZH5uqjLJmgTPfM4jX2T\nwrcExg8aQV1TgYGhwud4vNcVKVY+o/SUaoVfiIK2xwi7u2rgIHX64wXhA4h/11SgIqjRslmxl98C\nNyoU4Cy/VdBuWtSroM8JIKmKfGjYXvqcmDx+F1EUYwyeE49ifrVYUMsiinEK87qhkK8J4AaMsJU8\n6xiAfCqld0sm38dwznXhVkJnMsYQ2LJw/g7WbquZroIOG1zyJNf7KBXIrw0gckGVfybTYQICyPCZ\naivJXAk9bGyk5Fb4w8YIuRk0hpzNlwIDQ9jvWYji+xgiFvV+SExXBUpZpmshMpl9lMliN+fcXQVt\nVuxmS2A4qMIPGGOwWhYV9h7f1hYZmVb+RVwTMl0VKGXmO9wdUzMrZb/FbpL9jg4aRA5ax+A3ruD+\nrEEjacTt+gk328gMIGFbFsPVdutkWoWRkaCuJL8uJ1eeWhNBjbpcz3glMADFJptTV6XwW2IY+Rhz\n+ndGfVoJYRfCBXYluTW3XyshivUOEQSJdHrxwsjFhnoEBqCUhP1O4rCDz0GtDjPtjF2RD48ZwWCS\nf1fSsNViGH+8QZKGjLRzFsL5tRLSmZUUtjURcY0ZRTcQs5KAXCv0d4hbs/h9iU/Q1NVMF7gFfFeD\n+SU+Q5NTlfqQ7G4gv1ZC0FjEsHMPzziNBY0xFNnit7DLSbKhAIsDKBNuRZvNvu10FrGN+Byfca47\n459mzlIanuxf4VtjB/IPIEHjD75f+xnFOoYc1pBhK39mJQFIT9idVzPZYC+N1dNDg8aspOn+C9z8\nKny38h+ygoYdXIaqU7OUKqt9Zii555mOPxTINFcTs5KAbCvUd4Tfx8SwFZX7+qAN9sIOPltjDHbS\n2ND4LYFBTbWuMyv8ASNtQBdY1/mNRUj2LKVp1cYMJfuy8APTeRpvcPnNSmLwGciWQv+fH/ZLfNxK\n3bwu7HTV0N/57KSdCUgzxhj8BqIlt8L3r/yDWgy+W3KHrfzd8xz+34iiIi/vwedCzmkRbqtbFgr5\n/0y2BO2jZMpkVtJgwHXnjD+kBqOHjPGGoalBFb5/5R82aGjKqdSx22IwB+DDdjNl4Xujw+44kk/l\n+NaJHqWIQhe0Ijpo8Nms8C90rgsYfDbPh42prANT7S4is8vIrPyDupzcAexB4x4JIxhUujOxMulK\nCpq9FHRdBPwafFGvixgPVRpQqoIGov2+0EcKv/I5ZDeTNUPpnNlG448xuC0Gs/IfCAgavgPRkt1i\nCDv+UKY1ZJn+2kARC9vn4DfeINkfM8MOPgdNVz0VlGZU/sNOi2GyWeGnjt0Wgz0w7aYZr6tOpU2r\ndjJV7XMs+XczZboQLgNhB5WDGnhRITAAUSuUd1Um4w3uud+aBil48Nmnm8ndhXVwcqoi92s9uOdB\nayF8xxskOxiEHWMIuxDOeb4qZNdS2E1uw2JWElBqgr72M2iDvTDCbrbn/iwzT+6X0QS1Jj4xjo36\nefCUU+FPT51/ootSzzvTVc2uJPM691prvGGanaVKc4zESfNtTWS6SC5iQfG5vGclAYUsX++kTLqV\n3NcFTWU1K3x3MDdo8HnIJ+2U3WIwu5bMbqV0upIGfdIGptkti+nVw6kT93fxCwZRrHcIKez3JQVh\n5TOQb8X07gnaU8kdYzAr8gqf593zsOMPTu+O2YL4ZHaqJeC2CszzsGkDFXarY/o0IzC4LQbzPGgs\nImQwqMzi+EMutucunv/axZNTmAppcnYYxfD/bKLdSlL4rTOCFsJFEBiGjcAwOHv8biX3fNDpZvLr\ngnJbHd60j5PHsaDB5yjWO4QUdt+jsJvc0mJAceB/WG5lEojdv9EZnzR3gZuZ5s5K8qto3etOpG7y\nyUzjk/90/8DwkWZaaTVG2gnNMo7t6z6ZcSx5PH3GsJVmtRj8jiW7BRFyHUPYt0Am37Z6vrRM8bYF\nyl3YgemgtRBhu5k+ca4zB6ZPhAsMp5zWhBkA7NaDM05hdC1Z3UqSf1dShi2GqoCa1S8AhF24RosB\nKFdht+QO2lMp2914Qf3tZsvAr/UgyeoVujB1kxMz7U/7x6bXJI8vcqLLTJ1Ivc4IEsdUY11Xo/7k\nce2Mj620yhnGiXkcNBYR1OUUUti1C4M+x+51BAYA5wo7/hAUNMJuxGfOPHJ/lt8YgxsYzLRU/W61\nHiS7BeGOP5jBwK/1cDYt1c30yfSjVtqsaUZ1G9SVFHZLjJDrGIKKd9DnuoCv3o4MgQEoBkFrHMJI\nZx1D0BRVP0EthrDTP60tK+wLj12Y+vQ/dfaAlWa2IMzWwxHNta4z09zWxKyaeOrEjBlZaDH4BQO3\ngvdLy0YgcBEYgGITNkgEtR6i+EIf83XuGEPYvYfMytVoMbgb9g33T09d5nYzTUpV8jP1kXF8wrrO\nbE24A9gnZ6eigTUwHXZaa4a7sIZtMeQiGJgIDEAxC9o11ayc0+l89gsaQT8rqGsq6HVhGfk4Vnmx\nlTT5M6mK/AKlWhNTnerUDBRu0JhVkTqfPsdoPdgNC//WhDv9NeTgs9n2ccfl3fNcKp7AUGzz4cMo\nntJHMcpG0DD5LYQLciIgLajP3hrAjllJR6bNSR5PnZuqaoMGqd3AUKPUVNb5s99PHk+b7ezQmkFX\nUtCYQNDXXeQTVVM+lWKwQ+kKmgHl1iR+C+PcMQu/UVV3X6aAhXZjxqZI7+iy5HHFXDsyVho3maqA\ncYrqVHfUFRe/Z/+w943j2cZx0CC1wwwAx32ez7fiCQxUokB60tlRNcx1QZW/+wk/7MymTL4tLmBT\noTGjhn636jLrssmzU9HGbU2Y5+a01rkNzuyl/2dkLGhaq1EeQWMHJ1WYCiIwdHR06Ac/+IFGR0f1\nta99TQ899NC5F2Vj0/FiNNIpVa3Ody4KA2WRMl5ZZPs9EzQdNuT21GEHn600tzvKTfvfTuk/Vmv4\nxHTrskOLVySPBz9jL35LGDV5hdWysCPUFz7XnTyOfWAk/F8nT8bv5f4ZzFZCoX7ezXtgGBoa0n33\n3aeXX35Zc+fO1dVXX63rr79ey5Ytcy7MT/4KzlCnNLY637koDJRFSj7KwnxPhq1J3JaF+cHdDDRB\nW2y4gaHPOO6X9EandGq1jA/+/35damzi8KkmKynRMv4gidvlNHN26oc3ffZwKuGfzguNFoRb+R9X\n4ct7YHj99dfV1NSkBQsWSJLWrVun9vb2cwOD+x+lXHmi9fQpyiKlkMsik3UXbmskaMqr2bro1dlA\nMSLpXec68/x/7aT33r0ieXzsv2qTx4NT7ZaF2ZqYuSQVJBb885h1nTn+4PaKFdJYgp+8B4Z4PK6G\nhobkeX19vTo7O8+90CuG4syFBGWRRFmkFHBZZNJfkkijavrIfWJM6h9RYF9XzDk3pqWe+mwqMOxZ\n/RXrsj1fT53/n//ckTzetH67dd2XnuxKHi93przucWJIIcp7YIjF3L+Qn6nnv6Rs/E++M1BAKIsU\nyiLlv4OTPee83+f4Vee6banDP2r841KQ98BQX1+vnp6e5HlPT4/VgpAkz3P/igCAbJmU7wx8/vOf\n16FDh9Tb26uRkRHt2rVLa9euzXe2AKBs5b3FMGXKFD3xxBO64YYbNDY2po0bN2r58uX5zhYAlK28\ntxgkae3atTp06JB+9atf6Y9//KMaGxv1i1/8YtxrH3jgATU1NWn58uU6cOBAjnOaOx0dHWpubvYt\niz/84Q9qaWlRc3OzVqxYoe7u7nHuUhrOVxaf2rdvnyorK/XMM8/kMHe5FaYsOjs7tXLlSi1dulTX\nXnttjnOYO+criw8//FDXXXedmpqadPnll2v79u3j3KX43XPPPZo7d66am5t9r0m73vQKxJkzZ7zL\nLrvMi8fj3sjIiLdixQpv//791jVPP/20d8stt3ie53n79+/3lixZko+sZl2Ysnj99de9kydPep7n\nec8995y3dOnSfGQ168KUhed5XiKR8L785S97N910k/f000/nIafZF6YsPvjgA6+pqck7cuSI53me\nd+zYsXxkNevClMWPfvQj74c//KHneZ7X19fnzZw50ztz5kw+sptVf/vb37z9+/d7ixcvHjc9k3qz\nIFoMkr2eobKyMrmewbR3715t3LhRkrRs2TIlEgnF4/HxblfUwpTFypUrddFFZ7+I5Itf/KJ6e3vz\nkdWsC1MWkvT444/rjjvuUF1dXR5ymRthyuKpp57SunXrNGfO2Y3lZs+ePd6til6YsmhoaNDJk2c3\nnTh58qTq6upUXe1ug1r8rrnmGs2aNcs3PZN6s2ACw3jrGdzMh7mmFKT7e27fvl233HJLLrKWc2HK\nore3V3/+85913333SUpnCnRxCVMWb7/9tt5//31dffXVamlp0ZNPPpnrbOZEmLL45je/qX/84x+6\n+OKLtWTJEj322GO5zmZByKTezPvg86fCvpk9Z+pqKVYC6fxOnZ2d2rFjh1555ZUs5ih/wpTFgw8+\nqJ///OeKxWLyPK9kpzeHKYvR0VEdOnRIf/3rXzUwMKCrrrpKV199tZqams772mISpix+9rOfaenS\npers7NThw4e1Zs0avfHGG8mWdjlJt94smBZDmPUM7jXxeFz19fU5y2OuhCkLSTp48KDuvfdePfvs\ns4FNyWIWpiy6u7u1fv16LVy4ULt379b999+vZ599NtdZzbowZXHJJZfo+uuv1wUXXKCamhpde+21\nOnjwYK6zmnVhyuLll1/WV75ydqXyokWLtHDhQv3zn+6mRqUvo3ozshGQCRocHPQuvfRSLx6Pe8PD\nw96KFSu87u5u65qnn37au/XWWz3P87zu7m6vpaUlH1nNujBl8d5773mLFi3yXn311TzlMjfClIXp\n61//urd79+4c5jB3wpTF/v37veuuu85LJBLe6dOnvcbGRu/AgQN5ynH2hCmL+++/39uyZYvneZ73\n4YcfevPmzUsOypead955J3DwOd16s2C6kvzWM3w6xWzTpk26/fbb9eKLL6qpqUnV1dX63e9+l+dc\nZ0eYsnjkkUf00UcfJfvVq6qq1NXVFXTbohSmLMpFmLJYtmyZbrzxRrW0tGhkZET33nuvli5dmuec\nRy9MWfzkJz/Rhg0b1NjYqNHRUf30pz9NDsqXkjvvvFMvvfSS+vv71dDQoK1bt2pk5OyOipnWmzHP\nK9EOWQBARgpmjAEAUBgIDAAAC4EBAGAhMAAALAQGIAP79u3TkiVLNDQ0pNOnT2vx4sV666238p0t\nIBLMSgIy9OMf/1hnzpzR4OCgGhoa9NBDD+U7S0AkCAxAhkZGRrRixQpdcMEFevXVV0tyexaUJ7qS\ngAz19/fr9OnTOnXqlAYHB/OdHSAytBiADN18882666679K9//UsffPCBHn/88XxnCYhEwWyJARST\n3//+96qguAyGAAAAQUlEQVSurtb69es1NjamL3zhC+rs7NTq1avznTVgwmgxAAAsjDEAACwEBgCA\nhcAAALAQGAAAFgIDAMBCYAAAWP4/JxX2wzCh4jcAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x3aa01d0>"
       ]
      }
     ],
     "prompt_number": 169
    }
   ],
   "metadata": {}
  }
 ]
}
http://nbviewer.jupyter.org/urls/bitbucket.org/%21api/2.0/snippets/cia_rana/LEygX/74a33f2e65f12a4d0a7c5b9b31564d014532da70/files/2013-12-03-Crank_Nicolson.ipynb

Comments (0)

HTTPS SSH

You can clone a snippet to your computer for local editing. Learn more.